Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal-Fluid Coupling Numerical Simulation of Axial Ultrasonic Vibration Friction Stir Welding

  • 5 Accesses

In this study, a mathematical model of axial ultrasonic vibration enhanced friction stir welding is developed to predict the effect of ultrasonic vibration during friction stir welding of aluminum alloys 6061. The research focuses on the effect of with/without axial ultrasonic vibration in friction stir welding by the temperature distribution and material flow characteristics. Results indicate that the addition of axial ultrasonic vibration can reduce the heat generation rate and the temperature of contact surface between the rotating tool tip and the workpiece during the welding process, and improve the flow rate of the plastic metal material near the rotating tool tip. Under the same process parameters, when the vibration frequency is constant, as the vibration amplitude increases, the peak temperature of the welding decreases gradually, and the flow rate of the plastic metal material gradually increases

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. 1.

    R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R, 50, Nos. 1–2, 1–78 (2005).

  2. 2.

    C. M. Chen and R. Kovacevic, “Finite element modeling of friction stir welding – thermal and thermomechanical analysis,” Int. J. Mach. Tool. Manu., 43, No. 13, 1319–1326 (2003).

  3. 3.

    P. L. Threadgill, A. J. Leonard, H. R. Shercliff, and P. J. Withers, “Friction stir welding of aluminium alloys,” Int. Mater. Rev., 54, No. 2, 49–93 (2009).

  4. 4.

    G. Cam, “Friction stir welded structural materials: beyond Al-alloys,” Int. Mater. Rev., 56, No. 1, 1–48 (2014).

  5. 5.

    X. He, F. Gu, and A. Ball, “A review of numerical analysis of friction stir welding,” Prog. Mater. Sci., 65, 1–6 (2014).

  6. 6.

    J. Q. Su, T. W. Nelson, R. Mishra, and M. Mahoney, “Microstructural investigation of friction stir welded 7050-T651 aluminium,” Acta Mater., 51, No. 3, 713–729 (2003).

  7. 7.

    S. Amini and M. R. Amiri, “Study of ultrasonic vibrations’ effect on friction stir welding,” Int. J. Adv. Manuf. Tech., 73, Nos. 1–4, 127–135 (2014).

  8. 8.

    X. Liu, C. Wu, and G. K. Padhy, “Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding,” Scripta Mater., 102, 95–98 (2015).

  9. 9.

    X. C. Liu and C. S. Wu, “Material flow in ultrasonic vibration enhanced friction stir welding,” J. Mater. Process. Tech., 225, 32–44 (2015).

  10. 10.

    K. Park, “Development and analysis of ultrasonic assisted friction stir welding process,” Dissertations & Theses-Gradworks, 222, No. 10, 91–102 (2009).

  11. 11.

    H. Montazerolghaem, M. Badrossamay, and A. F. Tehrani, “Investigation of vibration assisted friction stir welding,” Key Eng. Mater., 504, 741–746 (2012).

  12. 12.

    Y. B. Zhong, C. S. Wu, G. K. Padhy, “Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding,” J. Mater. Process. Tech., 239, 273–283 (2017).

  13. 13.

    X. C. Liu, C. S. Wu, and G. K. Padhy, “Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding,” Sci. Technol. Weld. Joi., 20, No. 4, 345–352 (2015).

  14. 14.

    H. K. Ma, D. Q. He, and J. S. Liu, “Ultrasonically assisted friction stir welding of aluminium alloy 6061,” Sci. Technol. Weld. Joi., 20, No. 3, 216–221 (2015).

  15. 15.

    L. Shi, C. S. Wu, and X. C. Liu, “Modeling the effects of ultrasonic vibration on friction stir welding,” J. Mater. Process. Tech., 222, 91–102 (2015).

  16. 16.

    H. Su, C. S. Wu, M. Bachmann, and M. Rethmeier, “Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding,” Mater. Design, 77, 114–125 (2015).

  17. 17.

    Q. Liu, N. Gu, Y. Gao, and X. Yang, “Thermal modeling based on the energy per unit length of weld in friction stir welding,” J. Nanoelectron. Optoe., 13, No. 7, 1019–1027 (2018).

  18. 18.

    G. Chen, H. Li, G. Wang, et al., “Effects of pin thread on the in-process material flow behavior during friction stir welding: A computational fluid dynamics study,” Int. J. Mach. Tool. Manu., 124, 12–21 (2018).

  19. 19.

    O. Lorrain, J. Serri, V. Favier, et al., “A contribution to a critical review of friction stir welding numerical simulation,” J. Mech. Mater. Struct., 4, No. 2, 351–369 (2009).

  20. 20.

    B. C. Liechty and B. W. Webb, “Modeling the frictional boundary condition in friction stir welding,” Int. J. Mach. Tool. Manu., 48, Nos. 12–13, 1474–1485 (2008).

  21. 21.

    A. Arora, A. De, and T. DebRoy, “Toward optimum friction stir welding tool shoulder diameter,” Scripta Mater., 64, No. 1, 9–12 (2011).

  22. 22.

    M. Mehta, K. Chatterjee, and A. De, “Monitoring torque and traverse force in friction stir welding from input electrical signatures of driving motors,” Sci. Technol. Weld. Joi., 18, No. 3, 191–197 (2013).

  23. 23.

    G. Kelly, S. Advani, J. W. Gillespie, Jr., and T. A. Bogetti, “A model to characterize acoustic softening during ultrasonic consolidation,” J. Mater. Process. Tech., 213, No. 11, 1835–845 (2013).

  24. 24.

    J. C. Hung and C. Hung, “The influence of ultrasonic-vibration on hot upsetting of aluminum alloy,” Ultrasonics, 43, No. 8, 692–698 (2005).

  25. 25.

    T. Seidel, A. P. Reynolds, “Two-dimensional friction stir welding process model based on fluid mechanics,” Sci. Technol. Weld. Joi., 8, No. 3, 175–183 (2003).

Download references

Author information

Correspondence to Z. H. Ren.

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 116 – 125, November – December, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.C., Ren, Z.H., Kong, X.W. et al. Thermal-Fluid Coupling Numerical Simulation of Axial Ultrasonic Vibration Friction Stir Welding. Strength Mater (2020). https://doi.org/10.1007/s11223-020-00141-6

Download citation

Keywords

  • axial ultrasonic vibration
  • friction stir welding
  • aluminum alloy
  • temperature distribution
  • plastic flow rate