Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On Suitability of the Averaged Strain Energy Density Criterion in Predicting Mixed Mode I/Ii Brittle Fracture of Blunt V-Notches with Negative Mode I Contributions

  • 37 Accesses

The main goal of the present research is to check the suitability of the well-known brittle fracture criterion, namely the averaged strain energy density (ASED), in predicting mixed mode I/II brittle fracture of round V notches under negative mode I conditions. For this purpose, it is attempted for the first time to theoretically predict the fracture loads of numerous round-tip V-notched Brazilian disk (RV-BD) specimens made of PMMA and subjected to mixed mode I/II loading with negative mode I contributions that have been most recently reported in the open literature. It is revealed that ASED criterion is suitable for brittle fracture prediction not only under conventional mixed mode I/II loading conditions, but also under mixed mode I/II loading with negative mode I contributions.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. 1.

    L. Susmel and D. Taylor, “On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features,” Eng. Fract. Mech., 75, 4410–4421 (2008).

  2. 2.

    D. Taylor, “Predicting the fracture strength of ceramic materials using the theory of critical distances,” Eng. Fract. Mech., 71, 2407–2416 (2004).

  3. 3.

    S. Kasiri and D. Taylor, “A critical distance study of stress concentrations in bone,” J. Biomech., 41, 603–609 (2008).

  4. 4.

    M. R. Ayatollahi and A. R. Torabi, “Brittle fracture in rounded-tip V-shaped notches,” Mater. Design, 31, 60–67 (2010).

  5. 5.

    M. R. Ayatollahi and A. R. Torabi, “Tensile fracture in notched polycrystalline graphite specimens,” Carbon, 48, 2255–2265 (2010).

  6. 6.

    A. R. Torabi, “Fracture assessment of U-notched graphite plates under tension,” Int. J. Fracture, 181, 285‑292 (2013).

  7. 7.

    A. R. Torabi, M. Fakoor, and E. Pirhadi, “Tensile fracture in coarse-grained polycrystalline graphite weakened by a U-shaped notch,” Eng. Fract. Mech., 111, 77–85 (2013).

  8. 8.

    A. R. Torabi and S. H. Amininejad, “Brittle fracture in V-notches with end holes,” Int. J. Damage Mech., 24, 529–545 (2014), https://doi.org/https://doi.org/10.1177/1056789514538293.

  9. 9.

    M. R. Ayatollahi and A. R. Torabi, “A criterion for brittle fracture in U-notched components under mixed mode loading,” Eng. Fract. Mech., 76, 1883–1896 (2009).

  10. 10.

    M. R. Ayatollahi and A. R. Torabi, “Investigation of mixed mode brittle fracture in rounded-tip V-notched components,” Eng. Fract. Mech., 77, 3087–3104 (2010).

  11. 11.

    M. R. Ayatollahi and A. R. Torabi, “Experimental verification of RV-MTS model for fracture in soda-lime glass weakened by a V-notch,” J. Mech. Sci. Technol., 25, 2529–2534 (2011).

  12. 12.

    M. R. Ayatollahi and A. R. Torabi, “Failure assessment of notched polycrystalline graphite under tensile shear loading,” Mater. Sci. Eng. A, 528, 5685–5695 (2011).

  13. 13.

    A. R. Torabi, “Sudden fracture from U-notches in fine-grained isostatic graphite under mixed mode I/II loading,” Int. J. Fracture, 181, 309–316 (2013).

  14. 14.

    M. R. Ayatollahi, A. R. Torabi, and P. Azizi, “Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch,” Exp. Mech., 51, 919–932 (2010).

  15. 15.

    A. R. Torabi, M. Fakoor, and E. Pirhadi, “Fracture analysis of U-notched disc-type graphite specimens under mixed mode loading,” Int. J. Solids Struct., 51, 1287–1298 (2014).

  16. 16.

    A. R. Torabi and E. Pirhadi, “Stress-based criteria for brittle fracture in key-hole notches under mixed mode loading,” Eur. J. Mech. A-Solid., 49, 1–12 (2015).

  17. 17.

    A. R. Torabi, S. M. Abedinasab, “Brittle fracture in key-hole notches under mixed mode loading: Experimental study and theoretical predictions,” Eng. Fract. Mech., 134, 35–53 (2015).

  18. 18.

    M. R. Ayatollahi and A. R. Torabi, “Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen,” Int. J. Solids Struct., 47, 454–465 (2010).

  19. 19.

    P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fracture, 112, 275–298 (2001).

  20. 20.

    F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R, 75, 1–48 (2014).

  21. 21.

    F. Berto, A. Campagnolo, and M. R. Ayatollahi, “Brittle fracture of rounded V-notches in isostatic graphite under static multiaxial loading,” Phys. Mesomech., 18, 283–297 (2015).

  22. 22.

    M. R. M. Aliha, F. Berto, A. Mousavi, and S. M. J. Razavi, “On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material,” Theor. Appl. Fract. Mech., 92, 198–204 (2017).

  23. 23.

    A. R. Torabi, F. Berto, and S. M. J. Razavi, “Tensile failure prediction of U-notched plates under moderate-scale and large-scale yielding regimes,” Theor. Appl. Fract. Mech., 97, 434–439 (2018). 783

  24. 24.

    A. R. Torabi, F. Berto, and S. M. J. Razavi, “Ductile failure prediction of thin notched aluminum plates subjected to combined tension-shear loading,” Theor. Appl. Fract. Mech., 97, 280–288 (2018).

  25. 25.

    H. R. Majidi, A. R. Torabi, M. Zabihi, et al., “Energy-based ductile failure predictions in cracked friction-stir welded joints,” Eng. Fail. Anal., 102, 327–337 (2019).

  26. 26.

    F. Berto, P. Lazzarin, and C. Marangon, “Brittle fracture of U-notched graphite plates under mixed mode loading,” Mater. Design, 41, 421–432 (2012).

  27. 27.

    F. J. Gomez, M. Elices, and A. Valiente, “Cracking in PMMA containing U-shaped notches,” Fatigue Fract. Eng. Mater. Struct., 23, 795–803 (2000).

  28. 28.

    B. Saboori, A. R. Torabi, F. Berto, and S. M. J. Razavi, “Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples,” Struct. Eng. Mech., 65, No. 6, 699–706 (2018).

  29. 29.

    F. Berto, D. A. Cendon, P. Lazzarin, and M. Elices, “Fracture behaviour of notched round bars made of PMMA subjected to torsion at -60°C,” Eng. Fract. Mech., 102, 271–287 (2013).

  30. 30.

    F. J. Gómez, G. V. Guinea, and M. Elices, “Failure criteria for linear elastic materials with U-notches,” Int. J. Fracture, 141, 99–113 (2006).

  31. 31.

    D. A. Cendón, A. R. Torabi, and M. Elices, “Fracture assessment of graphite V-notched and U-notched specimens by using the cohesive crack model,” Fatigue Fract. Eng. Mater. Struct., 38, 563–573 (2015).

  32. 32.

    D. Leguillon, “Strength or toughness? A criterion for crack onset at a notch,” Eur. J. Mech. A-Solid., 21, 61–72 (2002).

  33. 33.

    Z. Yosibash, E. Priel, and D. Leguillon, “A failure criterion for brittle elastic materials under mixed-mode loading,” Int. J. Fracture, 141, 291–312 (2006).

  34. 34.

    A. Sapora, P. Cornetti, A. Carpinteri, and D. Firrao, “An improved Finite Fracture Mechanics approach to blunt V-notch brittle fracture mechanics: Experimental verification on ceramic, metallic, and plastic materials,” Theor. Appl. Fract. Mech., 78, 20–24 (2015).

  35. 35.

    P. Weigraeber and W. Becker, “Finite Fracture Mechanics model for mixed mode fracture in adhesive joints,” Int. J. Solids Struct., 50, 2383–2394 (2013).

  36. 36.

    A. Sapora, P. Cornetti, and A. Carpinteri, “A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading,” Eng. Fract. Mech., 97, 216–226 (2013).

  37. 37.

    F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading,” Carbon, 63, 101–116 (2013).

  38. 38.

    A. R. Torabi and M. R. Ayatollahi, “Compressive brittle fracture in V-notches with end holes,” Eur. J. Mech. A-Solid., 45, 32–40 (2014).

  39. 39.

    M. R. Ayatollahi, A. R. Torabi, and M. Firoozabadi, “Theoretical and experimental investigation of brittle fracture in V-notched PMMA specimens under compressive loading,” Eng. Fract. Mech., 135, 187–205 (2015).

  40. 40.

    A. R. Torabi, M. Firoozabadi, M. R. Ayatollahi, “Brittle fracture analysis of blunt V-notches under compression,” Int. J. Solids Struct., 67–68, 219–230 (2015).

  41. 41.

    A. R. Torabi, B. Bahrami, and M. R. Ayatollahi, “Mixed mode I/II brittle fracture in V-notched Brazilian disk specimens under negative mode I conditions,” Phys. Mesomech., 19, 332–348 (2016).

  42. 42.

    A. R. Torabi, H. R. Majidi, and M. R. Ayatollahi, “Brittle failure of key-hole notches under mixed mode I/II loading with negative mode I contributions,” Eng. Fract. Mech., 168, 51–72 (2016).

  43. 43.

    M. R. Ayatollahi, A. R. Torabi, and A. S. Rahimi, “Brittle fracture assessment of engineering components in the presence of notches: a review,” Fatigue Fract. Eng. Mater. Struct., 39, 267–291 (2016).

  44. 44.

    A. R. Torabi and M. Taherkhani, “Extensive data of notch shape factors for V-notched Brazilian disc specimen under mixed mode loading,” Mater. Sci. Eng. A, 528, 8599–8609 (2011).

  45. 45.

    G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).

  46. 46.

    C. P. Spyropoulos, “Energy release rate and path independent integral study for piezoelectric material with crack,” Int. J. Solids Struct., 41, 907–921 (2004). 784

  47. 47.

    J. Z. Zuo and G. C. Sih, “Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 17–33 (2000).

  48. 48.

    G. C. Sih and J. Z. Zuo, “Multiscale behavior of crack initiation and growth in piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 123–141 (2000).

  49. 49.

    G. C. Sih and Z. F. Song, “Damage analysis of tetragonal perovskite structure ceramics implicated by asymptotic field solutions and boundary conditions,” Theor. Appl. Fract. Mech., 38, 15–36 (2002).

  50. 50.

    Z. F. Song and G. C. Sih, “Electromechanical influence of crack velocity at bifurcation for poled ferroelectric materials,” Theor. Appl. Fract. Mech., 38, 121–139 (2002).

  51. 51.

    Z. Suo, C.-M. Kuo, D. M. Barnett, and J. R. Willis, “Fracture mechanics for piezoelectric ceramics,” J. Mech. Phys. Solids, 40, 739–765 (1992).

  52. 52.

    H. Gao, T.-Y. Zhang, and P. Tong, “Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic,” J. Mech. Phys. Solids, 45, 491–510 (1997).

  53. 53.

    Z. Yosibash, A. Bussiba, and I. Gilad, “Failure criteria for brittle elastic materials”, Int. J. Fracture, 125, 307–333 (2004).

  54. 54.

    S. M. J. Razavi, M. R. M. Aliha, and F. Berto, “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens,” Theor. Appl. Fract. Mech., 97, 419–425 (2018).

  55. 55.

    S. M. J. Razavi, M. R. Ayatollahi, and F. Berto, “A synthesis of geometry effect on brittle fracture,” Eng. Fract. Mech., 187, 94–102 (2018).

  56. 56.

    S. M. J. Razavi and F. Berto, “Directed energy deposition versus wrought Ti–6Al–4V: A comparison of microstructure, fatigue behavior, and notch sensitivity,” Adv. Eng. Mater., 21, No. 8, 1900220 (2019).

  57. 57.

    L. P. Pook, A. Campagnolo, and F. Berto, “Coupled fracture modes of discs and plates under anti-plane loading and a disc under in-plane shear loading,” Fatigue Fract. Eng. Mater. Struct., 39, 924–938 (2016).

  58. 58.

    L. P. Pook, F. Berto, and A. Campagnolo, “State of the art of corner point singularities under in-plane and out-of-plane loading,” Eng. Fract. Mech., 174, 2–9 (2017).

  59. 59.

    P. Lazzarin, F. Berto, and M. Zappalorto, “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications,” Int. J. Fatigue, 32, 1559–1567 (2010).

  60. 60.

    G. Meneghetti, A. Campagnolo, F. Berto, and B. Atzori, “Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I+II) loading,” Theor. Appl. Fract. Mech., 79, 113–124 (2015).

  61. 61.

    A. Campagnolo, G. Meneghetti, and F. Berto, “Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I + II) crack tip fields including the T-stress contribution,” Fatigue Fract. Eng. Mater. Struct., 39, 982–998 (2016).

Download references

Author information

Correspondence to F. Berto.

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 103 – 121, September – October, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torabi, A.R., Razavi, S.M.J., Berto, F. et al. On Suitability of the Averaged Strain Energy Density Criterion in Predicting Mixed Mode I/Ii Brittle Fracture of Blunt V-Notches with Negative Mode I Contributions. Strength Mater 51, 770–785 (2019). https://doi.org/10.1007/s11223-019-00126-0

Download citation

Keywords

  • brittle fracture
  • mixed mode I/II loading
  • negative mode I contribution
  • V-notch
  • averaged strain energy density
  • round-tip V-notched Brazilian disk