Strength of Materials

, Volume 51, Issue 1, pp 56–61 | Cite as

Calculation of the γ-TiAl Lattice Resistance

  • R. C. Feng
  • L. L. Li
  • H. Y. LiEmail author
  • Z. M. Wang
  • Z. X. Zhu

The dislocation width and lattice resistance (Peierls stress) of a γ-TiAl alloy are calculated by the density ratio method. The lattice resistance is shown to decrease with the dislocation width. The relationship between the Peierls stress and dislocation width variation is defined by theoretical derivation. The yield stress is negatively correlated with the shear stress of the material. It can become a useful tool for choosing an appropriate shear stress under deformation.


γ-TiAl alloy lattice resistance dislocation crystal interplanar spacing 



This work was supported by a grant from the National Science Foundation of China (No. 51665030) and the Program for ChangJiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_15R30) and Doctoral research Foundation of Lanzhou University of Technology. The authors wish to thank Engineering Research center of Nonferrous Metallurgy’s New Equipment, Ministry of Education, Lanzhou University of technology for providing help.


  1. 1.
    Z. Wu, R. Hu, T. Zhang, et al., “Microstructure determined fracture behavior of a high Nb containing TiAl alloy,” Mater. Sci. Eng. A, 666, 297–304 (2016).CrossRefGoogle Scholar
  2. 2.
    H. Clemens and S. Mayer, “Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys,” Adv. Eng. Mater., 15, No. 4, 191–215 (2013).CrossRefGoogle Scholar
  3. 3.
    R. C. Feng, Z. Y. Rui, G. T. Zhang, “Improved method of fatigue life assessment for TiAl alloys,” Strength Mater., 46, No. 2, 183–189 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Terner, S. Biamino, D. Ugues, et al., “Phase transitions assessment on γ-TiAl by Thermo Mechanical Analysis,” Intermetallics, 37, 7–10 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Ma, D. Cuiuri, N. Hoye, et al. “The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding,” Mater. Sci. Eng. A, 631, 230–240 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Tian, X. Lv, H. Yu, et al.,“Creep behavior and deformation feature of TiAl–Nb alloy with various states at high temperature,” Mater. Sci. Eng. A, 651, 490–498 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Kanani, A. Hartmaier, and R. Janisch, “Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys,” Acta Mater., 106, 208–218 (2016).CrossRefGoogle Scholar
  8. 8.
    J. L. Su and X. F. Lian, “Relationship between intrinsic characteristic sizes of elastic property and plastic property of γ-TiAl based alloy,” Chinese J. Nonferr. Metal., 25, No. 2, 338–343 (2015).Google Scholar
  9. 9.
    J. C. Schuster and M. Palm, “Reassessment of the binary Aluminum-Titanium phase diagram,” J. Phase Equilib. Diff., 27, No. 3, 255–277 (2006).CrossRefGoogle Scholar
  10. 10.
    E. Oren, E. Yahel, and G. Makov, “Dislocation kinematics: a molecular dynamics study in Cu,” Model. Simul. Mater. Sc., 25, No. 2, 025002 (2017).CrossRefGoogle Scholar
  11. 11.
    Z. Li, N. Mathew, and R. C. Picu, “Dependence of Peierls stress on lattice strains in silicon,” Comp. Mater. Sci., 77, 343–347 (2013).CrossRefGoogle Scholar
  12. 12.
    G. Liu, X. Cheng, J. Wang, et al., “Improvement of nonlocal Peierls–Nabarro models,” Comp. Mater. Sci., 131, 69–77 (2017).CrossRefGoogle Scholar
  13. 13.
    G. T. Zhang, Z. Y. Rui, R. C. Feng, et al., “Illustration of fracture mechanism in high temperature for TiAl alloys,” Appl. Mech. Mater., 457–458, 19–22 (2014).CrossRefGoogle Scholar
  14. 14.
    L. Wang, “Calculation of the interplanar spacing of cubic crystal lattice,” J. Yunnan Nat. Univ., 24, No. 4, 346–348 (2015).Google Scholar
  15. 15.
    R. C. Feng, J. T. Lu, H. Y. Li, et al., “Effect of the microcrack inclination angle on crack propagation behavior of TiAl alloy,” Strength Mater., 49, No. 1, 75–82 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Hull and D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann (2011).Google Scholar
  17. 17.
    R. E. Schafrik, “Dynamic elastic moduli of the titanium aluminides,” Metall. Trans. A, 8, No. 6, 1003–1006 (1977).CrossRefGoogle Scholar
  18. 18.
    K. Tanaka, K. Okamoto, H. Inui, et al., “Elastic constants and their temperature dependence for the intermetallic compound Ti3Al,” Philos. Mag. A, 73, No. 5, 1475–1488 (1996).CrossRefGoogle Scholar
  19. 19.
    D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, Springer, Dordrecht (1998).Google Scholar
  20. 20.
    H.-D. Dietze, “Die Temperaturabhängigkeit der Versetzungsstruktur,” Z. Phys., 132, No. 1, 107–110 (1952).CrossRefGoogle Scholar
  21. 21.
    J. N. Wang, “Prediction of Peierls stresses for different crystals,” Mater. Sci. Eng. A, 206, No. 2, 259–269 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. C. Feng
    • 1
    • 2
  • L. L. Li
    • 1
    • 2
  • H. Y. Li
    • 1
    • 2
    Email author
  • Z. M. Wang
    • 1
    • 2
  • Z. X. Zhu
    • 1
    • 2
  1. 1.Key Laboratory of Digital Manufacturing Technology and Application, The Ministry of Education, Lanzhou University of TechnologyLanzhouChina
  2. 2.School of Mechanical and Electronical EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations