Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Numerical Study of 3D Dynamics and Strength of Metal-Composite Cylinders Under Internal Explosion Loading

  • 43 Accesses

  • 2 Citations

The 3D dynamics and strength of metal-composite finite-length cylinders under nonaxisymmetric internal explosion loading have been studied by a numerical-analytical method. The strength verification has been performed using three fracture criteria for a transtropic material: the maximum-stress criterion, the maximum-strain criterion, and the generalized Mises criterion. The influence of the explosive charge shift along the radius and axis with respect to the shell’s center of symmetry on the stress-strain state and strength of the cylinder has been investigated. The reinforced composites with low ultimate tensile strengths perpendicular to the reinforcement fibers have been found ineffective for such shells.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. 1.

    A. G. Ivanov (Ed.), Fracture of Non-Uniformly Scaled Objects under Explosion [in Russian], RFYaTs-VNIIÉF, Sarov (2001).

  2. 2.

    P. P. Lepikhin and V. A. Romashchenko, Strength of Heterogeneous Anisotropic Hollow Cylinders under Pulse Loading [in Russia], Naukova Dumka, Kiev (2014).

  3. 3.

    P. P. Lepikhin, V. A. Romashchenko, and E. V. Bakhtina, “Methods and findings of stress-strain and strength analyses of multilayer thick-walled anisotropic cylinders under dynamic loading (review). Part 1. Experimental studies,” Strength Mater., 45, No. 1, 10–19 (2013).

  4. 4.

    P. P. Lepikhin and V. A. Romashchenko, “Methods and findings of stress-strain state and strength analyses of multilayer thick-walled anisotropic cylinders under dynamic loading (review). Part 2. Theoretical methods,” Strength Mater., 45, No. 2, 144–153 (2013).

  5. 5.

    P. P. Lepikhin and V. A. Romashchenko, “Methods and findings of stress-strain state and strength analyses of multilayer thick-walled anisotropic cylinders under dynamic loading (review). Part 3. Phenomenological strength criteria,” Strength Mater., 45, No. 3, 271–283 (2013).

  6. 6.

    S. D. Voitenko, A. O. Vinglovs’kyi, and Yu. M. Sydorenko, “Experimental investigations of the process of deformation of enclosures of improvised bomb disposal containment,” Visn. NTUU “KPI.” Mashinobuduvannya, No. 58, 147–154 (2010).

  7. 7.

    Yu. N. Babich, “Numerical studies of deformation of the enclosure of an explosive device disposal containment chamber,” in: Reliability and Life of Machines and Structures [in Ukrainian], Issue 40, Kyiv (2015), pp. 136–143.

  8. 8.

    N. A. Abrosimov and A. V. Elesin, “Mathematical modeling of progressive fracture of composite cylindrical shells under multiple pulse loading,” in: Trans. XI Int. Conf. on Nonequilibrium Processes in Nozzles and Jets (NPNJ’2016, May 25–31, 2016, Alushta), MAI, Moscow (2016), pp. 287–289.

  9. 9.

    N. A. Abrosimov and N. A. Novosel’tseva, “Numerical analysis of the progressive fracture process inmetal–plastic cylindrical shells under pulse loading,” in: Trans. XI Int. Conf. on Nonequilibrium Processes in Nozzles and Jets (NPNJ’2016, May 25–31, 2016, Alushta), MAI, Moscow (2016), pp. 289–291.

  10. 10.

    P. P. Lepikhin, V. A. Romashchenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 2. Comparison of numerical results with experimental and theoretical for cylinders,” Strength Mater., 47, No. 3, 406–414 (2015).

  11. 11.

    P. P. Lepikhin, V. A. Romashchenko, and O. S. Beiner, “Theoretical investigation of fracture in stress waves of anisotropic cylinder under internal explosion,” Strength Mater., 48, No. 5, 615–631 (2016).

  12. 12.

    A. I. Abakumov, P. N. Nizovtsev, V. P. Solov’ev, et al., “Computational-experimental stress-strain analysis of composite shells of revolution under dynamic loading, allowing for large strains,” Mekh. Kompoz. Mater., No. 1, 28–37 (1998).

  13. 13.

    N. A. Abrosimov and A. V. Elesin, “Numerical analysis of the influence of reinforcement structure on dynamic behavior of composite cylindrical shells under explosion loading,” Probl. Prochn. Plast., Issue 74, 78–83 (2012).

  14. 14.

    N. A. Abrosimov, A. V. Elesin, and N. A. Novosel’tseva, “Numerical analysis of the influence of reinforcement structure on dynamic behavior and ultimate deformability of composite cylindrical rotational shells,” Mekh. Kompoz. Mater., No. 2, 313–326 (2014).

  15. 15.

    N. A. Abrosimov, A. V. Elesin, and S. A. Pirogov, “Numerical analysis of the nonaxisymmetric deformation and progressive fracture in multilayer composite cylindrical shells under pulse loading,” Probl. Prochn. Plast., 77, No. 1, 23–32 (2015).

  16. 16.

    N. A. Abrosimov and N. A. Novosel’tseva, “Numerical modeling of layerwise fracture of cylindrical shell under explosion loading,” Mekh. Kompoz. Mater., No. 4, 579–594 (2015).

  17. 17.

    P. P. Lepikhin, V. A. Romashchenko, S. A. Tarasovskaya, and V. G. Korbach, “Range of the applicability of the Wilkins method to the investigation of the dynamic stress-strain state of anisotropic elastic axisymmetric shells,” Strength Mater., 35, No. 1, 52–59 (2003).

  18. 18.

    P. P. Lepikhin, V. A. Romashchenko, S. A. Tarasovskaya, and V. F. Demenko, “Numerical study of dynamics of cylindrical spirally reinforced thick-walled shells,” Aviats.-Kosm. Tekhn. Tekhnol., Issue 5 (40), 56–60 (2003).

  19. 19.

    P. P. Lepikhin, V. A. Romashchenko, and S. A. Tarasovskaya, “Modification of the Wilkins method to study the dynamics of axisymmetric thick-wall shells with a spiral orthotropy,” Strength Mater., 36, No. 2, 119–124 (2004).

  20. 20.

    V. A. Romashchenko and S. A. Tarasovskaya, “Numerical study of dynamics of thick-walled cylindrical spirally reinforced shells,” Mekh. Kompoz. Mater., No. 2, 225–236 (2005).

  21. 21.

    V. A. Romashchenko, S. A. Tarasovskaya, and V. F. Demenko, “Numerical modeling of dynamics of thick-walled multilayer spirally reinforced cylindrical shells,” Otkr. Inform. Komp. Tekhnol., Issue 23, 170–182 (2004).

  22. 22.

    V. A. Romashchenko and S. A. Tarasovskaya, “Numerical studies on the dynamic behavior of multilayer thick-walled cylinders with helical orthotropy,” Strength Mater., 36, No. 6, 621–629 (2004).

  23. 23.

    V. A. Romashchenko, “A numerical study of the nonlinear dynamics of multilayer spirally orthotropic cylinders,” Strength Mater., 40, No. 6, 678–687 (2008).

  24. 24.

    V. A. Romashchenko, O. S. Beiner, and Yu. N. Babich, “Numerical-analytical method for 3D dynamics study of spirally orthotropic multilayer cylinders,” Strength Mater., 43, No. 4, 438–446 (2011).

  25. 25.

    V. A. Romashchenko and O. S. Beiner, “Numeric simulation of three-dimensional dynamics and strength of multilayered spirally orthotropic cylinders,” Strength Mater., 44, No. 2, 187–195 (2012).

  26. 26.

    V. A. Romashchenko, Yu. N. Babich, and E. V. Bakhtina, “Strength assessment for composite and metal-composite cylinders under pulse loading. Part 2. Numerical evaluation of strength for multilayer cylinders of finite length under internal explosion,” Strength Mater., 44, No. 5, 502–511 (2012).

  27. 27.

    S. Nelson, B. O’Toole, and J. Thota, “Explosive testing of open cylinders for verification of composite properties used in computational analysis,” in: ASME 2012 Verification and Validation Symposium (May 2–4, 2012, Las Vegas, NV) (2012).

  28. 28.

    V. V. Adishchev, V. M. Kornev, and L. A. Talzi, Assessment of Maximum Stresses in Closed Cylindrical Vessels under Axisymmetric Explosive Loading [in Russian], IGD SO AN SSSR, Novosibirsk (1983), Deposited in VINITI, No. 6588-83.

  29. 29.

    G. Randers-Pehrson and K. A. Bannister, Airblast Loading Model for Dyna-2D and Dyna-3D, Army Research Laboratory, ARL-TR-1310 (1997).

  30. 30.

    S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58–80 (1971).

  31. 31.

    L. J. Broutman and R. H. Krock (Eds.), Composite Materials, in 8 volumes. Vol. 2: J. Sendeckyi (Ed.), Mechanics of Composite Materials, Academic Press, New York (1974).

  32. 32.

    G. P. Zhao and C. D. Cho, “Damage initiation and propagation in composite shells subjected to impact,” Compos. Struct., 78, 91–100 (2007).

  33. 33.

    V. A. Romashchenko, “Strength assessment for composite and metal-composite cylinders under pulse loading. Part 1. Rules of choosing various strength criteria for anisotropic material and comparative analysis of such criteria,” Strength Mater., 44, No. 4, 376–387 (2012).

  34. 34.

    A. G. Ivanov, V. A. Sinitsyn, and S. A. Novikov, “Scale effects in dynamic fracture of structures,” Dokl. AN SSSR, 194, No. 2, 316–317 (1970).

  35. 35.

    A. G. Ivanov, V. N. Mineev, V. I. Tsypkin, et al., “Plasticity, fracture, and scale effect in explosive loading of steel pipes,” Fiz. Goren. Vzryva, No. 4, 603–607 (1974).

  36. 36.

    V. I. Tsypkin, O. A. Kleshchevnikov, A. T. Shitov, et al., “Scale effect in explosive fracture of water-filled vessels,” Atomn. Énerg., 38, Issue 4, 251–252 (1975).

  37. 37.

    V. I. Tsypkin, A. G. Ivanov, V. N. Mineev, and A. T. Shitov, “An experimental study of the scale effect, geometry, and filling medium on the strength of steel vessels under internal impulsive loading,” Atomn. Énerg., 41, Issue 5, 303–308 (1976).

  38. 38.

    A. G. Ivanov and V. N. Mineev, “On the scale criterion in brittle fracture of structures,” Dokl. AN SSSR, 220, No. 3, 575–578 (1975).

  39. 39.

    V. A. Ryzhanskii, V. N. Mineev, A. G. Ivanov, et al., “Failure of water-filled cylindrical glass-epoxy shells under internal impulsive loading,” Mekh. Polimer., No. 2, 283–289 (1978).

  40. 40.

    V. I. Tsypkin, V. N. Rusak, A. T. Shitov, et al., “Deformation and failure of cylindrical glass–epoxy shells under internal impulsive loading,” Mekh. Kompoz. Mater., No. 2, 249–255 (1981).

  41. 41.

    A. G. Fedorenko, V. I. Tsypkin, A. G. Ivanov, et al., “Special features of dynamic deformation and failure of cylindrical fiberglass reinforced plastic shells under internal impulsive loading,” Mekh. Kompoz. Mater., No. 1, 90–94 (1983).

  42. 42.

    A. G. Fedorenko, V. I. Tsypkin, A. G. Ivanov, et al., “Deformation and failure of different-scale cylindrical glass-reinforced plastic shells in internal pulsed loading,” Mekh. Kompoz. Mater., No. 4, 658–664 (1986).

  43. 43.

    A. G. Ivanov and V. I. Tsypkin, “Deformation and fracture of glass-plastic shells under extreme shock loads,” Mekh. Kompoz. Mater., No. 3, 472–480 (1987).

  44. 44.

    O. S. Vorontsova, M. A. Syrunin, A. G. Fedorenko, et al., “Experimental study of coefficients of variation of strength characteristics of glass-fiber-reinforced plastic shells under internal shock loading,” Mekh. Kompoz. Mater., No. 4, 642–646 (1987).

  45. 45.

    V. I. Tsypkin, V. N. Rusak, A. G. Ivanov, et al., “Deformation and fracture of two-layer metal–plastic shells under internal shock loading,” Mekh. Kompoz. Mater., No. 5, 833–838 (1987).

  46. 46.

    A. G. Fedorenko, V. I. Tsypkin, M. A. Syrunin, et al., “Behavior of composite shells with a highly elastic binder under internal shock loading,” Mekh. Kompoz. Mater., No. 2, 306–314 (1988).

  47. 47.

    A. G. Fedorenko, A. G. Ivanov, and M. A. Syrunin, “Dynamic strength of shells made of glass-fiber-reinforced plastic,” Mekh. Kompoz. Mater., No. 3, 425–430 (1989).

  48. 48.

    M. A. Syrunin, A. G. Fedorenko, and A. T. Shitov, “Strength of glass-plastic cylindrical shells of different configuration under loading by an explosion,” Fiz. Goren. Vzryva, No. 4, 108–115 (1989).

  49. 49.

    A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Limiting strain in an oriented fiberglass shell on internal explosive loading,” Fiz. Goren. Vzryva, No. 2, 87–93 (1992).

  50. 50.

    V. N. Rusak, A. G. Fedorenko, M. A. Syrunin, et al., “Ultimate deformability and strength of basalt-plastic shells under internal explosive loading,” Prikl. Mekh. Tekhn. Fiz., 43, No. 1, 186–195 (2002).

  51. 51.

    V. T. Troshchenko, A. Ya. Krasovskii, V. V. Pokrovskii, et al., Resistance of Materials to Deformation and Fracture [in Russian], Part 1, Naukova Dumka, Kiev (1993).

  52. 52.

    P. P. Lepikhin, V. A. Romashchenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 1. Program description,” Strength Mater., 47, No. 2, 249–256 (2015).

  53. 53.

    S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).

Download references

Author information

Correspondence to P. P. Lepikhin.

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 73 – 89, November – December, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lepikhin, P.P., Romashchenko, V.A. & Beiner, O.S. A Numerical Study of 3D Dynamics and Strength of Metal-Composite Cylinders Under Internal Explosion Loading. Strength Mater 49, 796–808 (2017). https://doi.org/10.1007/s11223-018-9925-5

Download citation

Keywords

  • metal-composite cylinder
  • filament-wound multilayer composite
  • internal explosive loading
  • threedimensional stress-strain state and strength
  • numerical-analytical method