Strength of Materials

, Volume 50, Issue 5, pp 807–817 | Cite as

Effect of the Interfacial Transition Zone on Basic Mechanical Properties of a Solid Composite Propellant

  • L. L. Shen
  • Z. B. ShenEmail author
  • H. R. Cui
  • H. Y. Li
  • S. J. Zhi

The evaluation of basic mechanical properties are shown to be of importance for the solid composite propellant development and application. The numerical analysis approach termed the three-phase Voronoi cell finite element method, was proposed to evaluate of the interfacial transition zone effect. Numerical results showed that the performance of the effective modulus could be essentially enhanced by increasing the zone thickness. The module of the composite with the inhomogeneous zone was higher than that of the composite with the homogeneous one. The effect of different zones on volume fractions and matrix moduli was also calculated. The Voronoi method can also be helpful for analyzing the characteristic properties of other three-phase composites.


solid composite propellant Voronoi cell finite element method interfacial transition zone 



This work is supported by the national natural science foundation of China (U1404106).


  1. 1.
    J. Xu, X. Chen, H. Wang, et al., “Thermo-damage-viscoelastic constitutive model of HTPB composite propellant,” Int. J. Solids Struct., 51, No. 18, 3209–3217 (2014).CrossRefGoogle Scholar
  2. 2.
    M. R. Taw and D. F. Bahr, “The mechanical properties of minimally processed RDX,” Propell. Explos. Pyrot., 42, No. 6, 659–664 (2017).CrossRefGoogle Scholar
  3. 3.
    P.-A. Toulemonde, J. Diani, P. Gilormini, et al., “Roles of the interphase stiffness and percolation on the behavior of solid propellants,” Propell. Explos. Pyrot., 41, No. 6, 978–986 (2016).CrossRefGoogle Scholar
  4. 4.
    J. P. Olivier, J. C. Maso, and B. Bourdette, “Interfacial transition zone in concrete,” Adv. Cem. Based Mater., 2, No. 1, 30–38 (1995).CrossRefGoogle Scholar
  5. 5.
    Z. Hanshin and P. J. M. Monteiro, “An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste,” Cement Concrete Res., 32, No. 8, 1291–1300 (2002).CrossRefGoogle Scholar
  6. 6.
    A. R. Brough and A. Atkinson, “Automated identification of the aggregate-paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste,” Cement Concrete Res., 30, No. 6, 849–854 (2000).CrossRefGoogle Scholar
  7. 7.
    K. L. Scrivener, A. K. Crumbie, and P. Laugesen, “The interfacial transition zone (ITZ) between cement paste and aggregate in concrete,” Interface Sci., 12, No. 4, 411–421 (2004).CrossRefGoogle Scholar
  8. 8.
    F. Belaid, G. Arliguie, and R. François, “Porous structure of the ITZ around galvanized and ordinary steel reinforcements,” Cement Concrete Res., 31, No. 11, 1561–1566 (2001).CrossRefGoogle Scholar
  9. 9.
    J. D. Shane, T. Mason, H. Jennings, et al., “Effect of the interfacial transition zone on the conductivity of Portland cement mortars,” J. Am. Ceram. Soc., 83, No. 5, 1137–1144 (2010).CrossRefGoogle Scholar
  10. 10.
    C. Pei, Y. Yao, D. Chen, et al., “Experimental study of the tensile bond strength in concrete aggregate-paste interfacial transition zone,” Appl. Mech. Mater., 193–194, No. 1384–1388 (2012).CrossRefGoogle Scholar
  11. 11.
    J. J. Zheng, F. F. Xiong, Z. M. Wu, and W. L. Jin, “A numerical algorithm for the ITZ area fraction in concrete with elliptical aggregate particles,” Mag. Concrete Res., 61, No. 2, 109–117 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Gao, G. D. Schutter, G. Ye, and M. Zhang, “A preliminary numerical study on ITZ in cementitious composites,” in: N. Kringos, B. Birgisson, D. Frost, and L. Wang (Eds.), Multi-Scale Modeling and Characterization of Infrastructure Materials, RILEM Bookseries, Vol. 8, Springer, Dordrecht (2013), pp. 99–108.CrossRefGoogle Scholar
  13. 13.
    F. Bernard and S. Kamali-Bernard, “Numerical study of ITZ contribution on mechanical behavior and diffusivity of mortars,” Comp. Mater. Sci., 102, 250–257 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Ghosh and S. N. Mukhopadhyay, “A two-dimensional automatic mesh generator for finite element analysis for random composites,” Comput. Struct., 41, No. 2, 245–256 (1991).CrossRefGoogle Scholar
  15. 15.
    S. Ghosh and S. N. Mukhopadhyay, “A material based finite element analysis of heterogeneous media involving Dirichlet tessellations,” Comput. Method. Appl. M., 104, No. 2, 211–247 (1993).CrossRefGoogle Scholar
  16. 16.
    S. Ghosh, K. Lee, and S. Moorthy, “Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method,” Int. J. Solids Struct., 32, No. 1, 27–62 (1995).CrossRefGoogle Scholar
  17. 17.
    S. Ghosh and Y. Liu, “Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials,” Int. J. Numer. Meth. Eng., 38, No. 8, 1361–1398 (1995).CrossRefGoogle Scholar
  18. 18.
    S. Ghosh and S. Moorthy, “Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method,” Comput. Method. Appl. M.., 121, Nos. 1–4, 373–409 (1995).CrossRefGoogle Scholar
  19. 19.
    S. Ghosh, K. Lee, and P. Raghavan, “A multi-level computational model for multiscale damage analysis in composite and porous materials,” Int. J. Solids Struct., 38, No. 14, 2335–2385 (2001).CrossRefGoogle Scholar
  20. 20.
    P. M. Eder, J. E. Giuliani, and S. Ghosh, “Multilevel parallel programming for 3D Voronoi cell finite element modeling of heterogeneous materials,” Int. J. High Perform. C., 19, No. 1, 29–45 (2005).CrossRefGoogle Scholar
  21. 21.
    L. L. Shen, Z. B. Shen, H. Y. Li, and Z. Y. Zhang, “A Voronoi cell finite element method for estimating effective mechanical properties of composite solid propellants,” J. Mech. Sci. Technol., 31, No. 11, 5377–5385 (2017).CrossRefGoogle Scholar
  22. 22.
    W. Wang and I. Jasiuk, “Effective elastic constants of particulate composites with inhomogeneous interphases,” J. Compos. Mater., 32, No. 15, 1391–1422 (1998).CrossRefGoogle Scholar
  23. 23.
    S. J. Zhi, B. Sun, and J. W. Zhang, “Multiscale modeling of heterogeneous propellants from particle packing to grain failure using a surface-based cohesive approach,” Acta Mech. Sinica, 28, No. 3, 746–759 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. L. Shen
    • 1
  • Z. B. Shen
    • 1
    Email author
  • H. R. Cui
    • 1
  • H. Y. Li
    • 1
  • S. J. Zhi
    • 2
  1. 1.College of Aeronautics and AstronauticsNational University of Defense TechnologyChangshaChina
  2. 2.China Airborne Missile AcademyLuoyangChina

Personalised recommendations