Advertisement

Strength of Materials

, Volume 50, Issue 5, pp 800–806 | Cite as

Study on a Cracked Single-Layer 2D Woven Composite Plate: Fracture Mode and Damage Analysis

  • Y. Q. Wang
  • P. Cheng
  • X. S. Liu
  • Y. J. Bao
  • H. Gao
Article
  • 22 Downloads

An experimental study and numerical calculation are conducted to investigate the crack propagation in a 2D woven composite. Crack propagation tests of single-layer composite plate specimens permit this process to be directly followed. Analysis of their fracture surfaces reveals crack propagation paths, fracture mode, and damage mechanisms. The load–deflection curve represents the crack propagation as a three-stage process. The stress intensity near the crack tip is evaluated with the critical stress intensity factor numerically calculated. The results demonstrate a good agreement between the calculations and experiment.

Keywords

woven carbon fibers crack propagation fracture mode damage stress intensity factor 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51605076, Grant No. 51375068, and Grant No. 51475073), the National Key Basic Research Program of China (Grant No. 2014CB046504), and the Liaoning Province Natural Science Foundation of China (Grant No. 201602171).

References

  1. 1.
    N. Liu, X. F. Yao, J. D. Chen, et al., “Research on the impact damage and fracture behavior of braided composites,” J. Exp. Mech., 217, No. 2, 184–190 (2002).Google Scholar
  2. 2.
    N. Blanco, D. Trias, S. T. Pinho, and P. Robinson, “Intralaminar fracture toughness characterisation of woven composite laminates. Part II: Experimental characterisation,” Eng. Fract. Mech., 131, 361–370 (2014).CrossRefGoogle Scholar
  3. 3.
    T. K. Jacobsen and B. F. Sørensen, “Mode I intra-laminar crack growth in composites – modelling of R-curves from measured bridging laws,” Compos. Part A-Appl. S., 32, No. 1, 1–11 (2001).CrossRefGoogle Scholar
  4. 4.
    M. W. Czabaj and J. G. Ratcliffe, “Comparison of intralaminar and interlaminar mode-I fracture toughness of unidirectional IM7/8552 graphite/epoxy composite,” in: 15th US-Japan Conference on Composite Material, NF1676Ll-15094 (2012).Google Scholar
  5. 5.
    A. Arguelles, J. Vina, A. F. Canteli, et al., “Interlaminar crack initiation and growth rate in a carbon-fibre epoxy composite under mode-I fatigue loading,” Compos. Sci. Technol., 68, No. 12, 2325–2331 (2008).CrossRefGoogle Scholar
  6. 6.
    M. V. Donadon, B. G. Falzon, L. Iannucci, and J. M. Hodgkinson, “Intralaminar toughness characterisation of unbalanced hybrid plain weave laminates,” Compos. Part A-Appl. S., 38, No. 6, 1597–1611 (2007).CrossRefGoogle Scholar
  7. 7.
    N. Blanco, D. Trias, S. T. Pinho and P. Robinson, “Intralaminar fracture toughness characterisation of woven composite laminates. Part I: Design and analysis of a compact tension (CT) specimen,” Eng. Fract. Mech., 131, 349–360 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Nasirmanesh and S. Mohammadi, “XFEM buckling analysis of cracked composite plates,” Compos. Struct., 131, 333–343 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Mohammadi, XFEM Fracture Analysis of Composites, John Wiley & Sons, Hoboken, NJ (2012).CrossRefGoogle Scholar
  10. 10.
    A. Asadpoure and S. Mohammadi, “Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method,” Int. J. Numer. Meth. Eng., 69, No. 10, 2150–2172 (2010).CrossRefGoogle Scholar
  11. 11.
    T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” Int. J. Fract. Mech., 45, No. 5, 601–620 (1999).Google Scholar
  12. 12.
    A. Asadpoure, S. Mohammadi, and A. Vafai, “Crack analysis in orthotropic media using the extended finite element method,” Thin Wall. Struct., 44, No. 9, 1031–1038 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Asadpoure, S. Mohammadi, and A. Vafai, “Modeling crack in orthotropic media using a coupled finite element and partition of unity methods,” Finite Elem. Anal. Des., 42, No. 13, 1165–1175 (2006).CrossRefGoogle Scholar
  14. 14.
    C. Carloni and L. Nobile, “Crack initiation behaviour of orthotropic solids as predicted by the strain energy density theory,” Theor. Appl. Fract. Mec., 38, No. 2, 109–119 (2002).CrossRefGoogle Scholar
  15. 15.
    C. Carloni, A. Piva, and E. Viola, “An alternative complex variable formulation for an inclined crack in an orthotropic medium,” Eng. Fract. Mech., 70, No. 15, 2033–2058 (2003).CrossRefGoogle Scholar
  16. 16.
    A. Piva and E. Viola, “Crack propagation in an orthotropic medium,” Eng. Fract. Mech., 29, No. 5, 535–548 (1988).CrossRefGoogle Scholar
  17. 17.
    W. Y. Zhang, A Numerical Model of Woven Fabric Composite, Tsinghua University, Beijing (2002).Google Scholar
  18. 18.
    R. Seifi and N. Khoda-yari, “Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading,” Thin Wall. Struct., 49, No. 12, 1504–1516 (2011).CrossRefGoogle Scholar
  19. 19.
    H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, ASME Press, New York (2000).CrossRefGoogle Scholar
  20. 20.
    T. L. Anderson, Fracture Mechanics Fundamentals and Applications, CRC Press, Boca Raton (1991).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Q. Wang
    • 1
  • P. Cheng
    • 1
  • X. S. Liu
    • 2
  • Y. J. Bao
    • 1
  • H. Gao
    • 1
  1. 1.Key Laboratory for Precision and Nontraditional Machining Technology of Ministry of Education, School of Mechanical EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Automotive EngineeringDalian University of TechnologyDalianChina

Personalised recommendations