Advertisement

Strength of Materials

, Volume 50, Issue 5, pp 781–787 | Cite as

Creep Lifetime Assessment of Pressure-Tight Pe100 Pipes Based on a Slow Fatigue Crack Growth

  • W. B. Luo
  • Y. P. Liu
  • B. Y. Yin
  • Y. Li
  • X. Liu
Article
  • 13 Downloads

Polyethylene pipes are widely used in water supply, gas, and sewage systems due to their excellent mechanical properties. A slow crack growth is the primary fracture mechanism for the pipes under long-term internal pressures. If the creep loading is treated as a special case of fatigue loading, the slow crack growth kinetics of polyethylene is defined in fatigue fracture tests at different stress ratios and extrapolated to creep crack kinetics. Linear elastic fracture mechanics concepts became the basis for predicting the creep lifetime of pressure-tight pipes subjected to various hoop stresses from extrapolated (synthetic) creep crack growth curves, and the prediction is in good agreement with the standard extrapolation in accordance with ISO 9080.

Keywords

slow crack growth creep lifetime stress intensity factor stress ratio polyethylene pipe 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11572275) and the Hunan Provincial Innovation Foundation for Postgraduate, China (CX2017B309).

References

  1. 1.
    A. Frank, W. Freimann, G. Pinter, et al., “A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades,” Eng. Fract. Mech., 76, 2780–2787 (2009).CrossRefGoogle Scholar
  2. 2.
    P. Hutar, M. Sevcik, L. Nahlik, et al., “A numerical methodology for lifetime estimation of HDPE pressure pipes,” Eng. Fract. Mech., 78, 3049–3058 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Frank, I. J. Berger, F. Arbeiter, et al., “Lifetime prediction of PE100 and PE100-RC pipes based on slow crack growth resistance,” in: Plastic Pipes Conference PPXVIII, Berlin (2016), DOI: 10.13140/RG.2.2. 27467.80165.Google Scholar
  4. 4.
    R. W. Lang, A. Stern, and G. Doerner, “Applicability and limitations of current lifetime prediction models for thermoplastics pipes under internal pressure,” Macromol. Mater. Eng., 247, 131–145 (1997).Google Scholar
  5. 5.
    N. Merah, Z. Khan, A. Bazoune, et al., “Temperature and loading frequency effects on fatigue crack growth in HDPE pipe material,” Arab. J. Sci. Eng., 31, 19–30 (2006).Google Scholar
  6. 6.
    A. Frank, P. Hutar, and G. Pinter, “Numerical assessment of PE 80 and PE 100 pipe lifetime based on Paris–Erdogan equation,” Macromol. Symp., 311, 112–121 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd edn, ASME Press, New York (2000), p. 53.Google Scholar
  8. 8.
    E. Nezbedová, G. Pinter, A. Frank, et al., “Accelerated tests for lifetime prediction of PE-HD pipe grades,” Macromol. Symp., 373, 1600096 (2017).CrossRefGoogle Scholar
  9. 9.
    G. Pinter, M. Haager, W. Balika, and R. W. Lang, “Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades,” Polym. Test., 26, 180–188 (2007).CrossRefGoogle Scholar
  10. 10.
    A. Frank, G. Pinter, and R. W. Lang, “A novel qualification procedure for lifetime and safety assessment of PE pressure pipes for arbitrary installing conditions,” in: Plastic Pipes Conference XIV, Budapest (2008).Google Scholar
  11. 11.
    R. W. Lang, G. Pinter, and W. Balika, “Konzept zur Nachweisführung für Nutzungsdauer und Sicherheit von PE-Druckrohren bei beliebiger Einbausituation,” 3 R International, 44, 33–41 (2005).Google Scholar
  12. 12.
    V. Favier, T. Giroud, E. Strijko, et al., “Slow crack propagation in polyethylene under fatigue at controlled stress intensity,” Polymer, 43, 1375–1382 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • W. B. Luo
    • 1
    • 2
  • Y. P. Liu
    • 1
  • B. Y. Yin
    • 1
  • Y. Li
    • 1
  • X. Liu
    • 1
    • 2
  1. 1.College of Civil Engineering and MechanicsXiangtan UniversityXiangtanChina
  2. 2.Hunan Key Laboratory of Geomechanics and Engineering SafetyXiangtan UniversityXiangtanChina

Personalised recommendations