Strength of Materials

, Volume 47, Issue 6, pp 840–848 | Cite as

Comparison Between Isothermal and Non-Isothermal Fatigue Behavior in a Cast Aluminum-Silicon-Magnesium Alloy

  • M. AzadiEmail author
  • G. Winter
  • G. H. Farrahi
  • W. Eichlseder

In the present study, the out-of-phase thermomechanical fatigue (OP-TMF) behavior of a cast aluminum-silicon-magnesium alloy, the A356.0 alloy which has been widely used in diesel engine cylinder heads, is compared to room-temperature and high-temperature low cycle fatigue (RT-, HT-LCF) behaviors. For this purpose, strain/temperature-controlled isothermal and non-isothermal fatigue tests were performed based on realistic loading conditions in cylinder heads. Fatigue tests results showed that the plastic strain increased during cycles under constant mechanical strain amplitude, while the specimen failed. Under LCF loadings, the cyclic hardening occurred at low temperatures for the A356.0 alloy and the cyclic softening occurred at high temperatures, as it was also observed in TMF tests. The radial and longitudinal temperature gradients during TMF tests were almost 2 and 3°C, respectively. Comparing stress-strain hysteresis loops, tensile stresses at minimum temperatures under TMF loadings were more than tensile stresses at LCF cases, due to the out-of-phase loading condition in TMF tests. In this state, maximum temperatures occurred within compressive regimes and minimum temperatures occurred at tensile loads. In general, TMF lifetimes were less than LCF ones due to severe conditions and the temperature deviation in TMF tests.


cast aluminum alloy isothermal fatigue non-isothermal fatigue low cycle fatigue thermomechanical fatigue hysteresis loop cyclic softening and hardening 



Authors thank Irankhodro Powertrain Company (IPCO) in Iran and University of Leoben in Austria, for their financial support.


  1. 1.
    J. Z. Yi, P. D. Lee, T. C. Lindley, and T. Fukui, “Statistical modeling of microstructure and defect population effects on the fatigue performance of cast A356-T6 automotive components,” Mater. Sci. Eng. A, 432, 59–68 (2006).CrossRefGoogle Scholar
  2. 2.
    A. Moridi, M. Azadi, and G. H. Farrahi, “Coating thickness and roughness effect on stress distribution of A356.0 under thermo-mechanical loadings,” Proc. Eng., 10, 1372–1377 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Moridi, M. Azadi, and G. H. Farrahi, “Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects,” Surf. Coat. Technol., 243, 91–99 (2012).CrossRefGoogle Scholar
  4. 4.
    D. L. McDowell, K. Gall, M. F. Horstemeyer, and J. Fan, “Microstructure-based fatigue modeling of cast A356-T6 alloy,” Eng. Fract. Mech., 70, 49–80 (2003).CrossRefGoogle Scholar
  5. 5.
    B. Atzori, G. Meneghetti, and L. Susmel, “Fatigue behavior of AA356-T6 cast aluminum alloy weakened by cracks and notches,” Eng. Fract. Mech., 71, 759–768 (2004).CrossRefGoogle Scholar
  6. 6.
    X. Zhu, A. Shyam, J. W. Jones, et al., “Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles,” Int. J. Fatigue, 28, 1566–1571 (2006).CrossRefGoogle Scholar
  7. 7.
    Y. X. Gan and R. A. Overfelt, “Fatigue property of semisolid A357 aluminum alloy under different heat treatment conditions,” J. Mater. Sci., 41, 7537–7544 (2006).CrossRefGoogle Scholar
  8. 8.
    J. Z. Yi, Y. X. Gao, P. D. Lee, and T. C. Lindley, “Microstructure-cased fatigue life prediction for cast A356-T6 aluminum-silicon alloys,” Metall. Mater. Trans. B, 37, 301–311 (2006).CrossRefGoogle Scholar
  9. 9.
    D. L. McDowell, “Simulation-based strategies for microstructure-sensitive fatigue modeling,” Mater. Sci. Eng. A, 468-470, 4–14 (2007).CrossRefGoogle Scholar
  10. 10.
    H. R. Ammara, A. M. Samuela, and F. H. Samuel, “Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys,” Int. J. Fatigue, 30, 1024–1035 (2008).CrossRefGoogle Scholar
  11. 11.
    M. A. Bayoumi, M. I. Negma, and A. M. El-Gohry, “Microstructure and mechanical properties of extruded Al-Si alloy (A356) in the semi-solid state,” Mater. Des., 30, 4469–4477 (2009).CrossRefGoogle Scholar
  12. 12.
    J. J. I. Mattos, A. Y. Uehara, M. Sato, and I. Ferreira, “Fatigue properties and micro-mechanism of fracture of an AlSiMg0.6 cast alloy used in diesel engine cylinder head,” Proc. Eng., 2, 759–765 (2010).CrossRefGoogle Scholar
  13. 13.
    P. K. Rohatgi, S. Alaraj, R. B. Thakkar, and A. Daoud, “Variation in fatigue properties of cast A359-SiC composites under total strain controlled conditions: effects of porosity and inclusions,” Compos. Part A, 38, 1829–1841 (2007).CrossRefGoogle Scholar
  14. 14.
    A. R. Emami, S. Begum, D. L. Chen, et al., “Cyclic deformation behavior of a cast aluminum alloy,” Mater. Sci. Eng. A, 516, 31–41 (2009).CrossRefGoogle Scholar
  15. 15.
    S. Mousheng and R. Maowu, “Microstructures and properties of low cycle fatigue of electrolytic A356 alloys,” Mater. Charact., 62, 367–372 (2011).CrossRefGoogle Scholar
  16. 16.
    T. Takahashi, Y. Sugimura, and K. Sasaki, “Thermal plastic-elastic analysis in consideration of metallurgical microstructure,” J. Manuf. Sci. Eng., 126, 25–32 (2004).CrossRefGoogle Scholar
  17. 17.
    T. J. Smith, H. J. Maier, H. Sehitoglu, et al., “Modeling high-temperature stress-strain behavior of cast aluminum alloys,” Metall. Mater. Trans. A, 30, 133–146 (1999).CrossRefGoogle Scholar
  18. 18.
    H. Sehitoglu, X. Qing, T. Smith, et al., “Stress-strain response of a cast 319-T6 aluminum under thermo-mechanical loading,” Metall. Mater. Trans. A, 31, 139–151 (2000).CrossRefGoogle Scholar
  19. 19.
    T. Beck, K. H. Lang, and D. Löhe, “Thermal-mechanical fatigue behavior of cast aluminum alloys for cylinder heads reinforced with 15 vol.% discontinuous Al2O3 (Saffil) fibers,” Mater. Sci. Eng. A, 319-321, 662–666 (2001).CrossRefGoogle Scholar
  20. 20.
    J. Luft, T. Beck, and D. Löhe, “Lifetime and damage behavior of a cast aluminum alloy under TMF and superimposed TMF/HCF loading,” in: Proc. of the 11th Int. Conf. on Fracture (March 20–25, 2005, Turin), Politecnico di Torino, Turin, Italy (2005), Vol. 4, pp. 2664–2669.Google Scholar
  21. 21.
    T. Beck, D. Löhe, J. Luft, and I. Henne, “Damage mechanisms of cast Al-Si-Mg alloys under superimposed thermal-mechanical fatigue and high-cycle fatigue loading,” Mater. Sci. Eng. A, 468-470, 184–192 (2007).CrossRefGoogle Scholar
  22. 22.
    T. Beck, I. Henne, and D. Löhe, “Lifetime of cast AlSi6Cu4 under superimposed thermal-mechanical fatigue and high-cycle fatigue loading,” Mater. Sci. Eng. A, 483-484, 382–386 (2008).CrossRefGoogle Scholar
  23. 23.
    J. J. Thomas, L. Verger, A. Bignonnet, and S. M. Borret, “Thermo-mechanical design in the automotive industry,” SAE Int., Paper No. 2002-01-0659 (2002).Google Scholar
  24. 24.
    J. J. Thomas, L. Verger, A. Bignonnet, and E. Charkaluk, “Thermo-mechanical design in the automotive industry,” Fatigue Fract. Eng. Mater. Struct., 27, 887–895 (2004).CrossRefGoogle Scholar
  25. 25.
    W. W. Bose-Filho, E. R. de Freitas, V. F. da Silva, et al., “Al-Si cast alloys under isothermal and thermo-mechanical fatigue conditions,” Int. J. Fatigue, 29, 1846–1854 (2007).CrossRefGoogle Scholar
  26. 26.
    M. Riedler, C. Czettl, R. Minichmayr, et al., “Thermo-mechanical fatigue lifetime assessment with damage-parameters, energy-criteria and cyclic-J-integral concepts,” in: Proc. of the 16th Eur. Conf. on Fracture (July 3–7, 2006), Alexandroupolis, Greece (2006).Google Scholar
  27. 27.
    M. Riedler, H. Leitner, B. Prillhofer, et al., “Lifetime simulation of thermo-mechanically loaded components,” Meccanica, 42, 47–59 (2007).CrossRefGoogle Scholar
  28. 28.
    T. Takahashi and K. Sasaki, “Low cycle thermal fatigue of aluminum alloy cylinder head in consideration of changing metrology microstructure,” Proc. Eng., 2, 767–776 (2010).CrossRefGoogle Scholar
  29. 29.
    M. B. Grieb, H. J. Christ, and B. Plege, “Thermo-mechanical fatigue of cast aluminum alloys for cylinder head applications – experimental characterization and life prediction,” Proc. Eng., 2, 1767–1776 (2010).CrossRefGoogle Scholar
  30. 30.
    M. Azadi, A. Mafi, M. Roozban, and F. Moghaddam, “Failure analysis of a crack gasoline engine cylinder head,” J. Fail. Anal. Prev., 12, No. 3, 286–294 (2012).CrossRefGoogle Scholar
  31. 31.
    M. Azadi, M. M. Shirazabad, “Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy,” Mater. Des., 45, 279–285 (2013).CrossRefGoogle Scholar
  32. 32.
    M. Azadi, “Effects of strain rate and mean strain on cyclic behavior of aluminum alloys under isothermal and thermo-mechanical fatigue loadings,” Int. J. Fatigue, 47, 148–153 (2013).CrossRefGoogle Scholar
  33. 33.
    M. Azadi, G. H. Farrahi, G. Winter, and W. Eichlseder, “The effect of various parameters on out-of-phase thermo-mechanical fatigue lifetime of A356.0 cast aluminum alloy,” Int. J. Eng. Trans. C: Aspects, 26, No. 12, 1461–1470 (2013).Google Scholar
  34. 34.
    G. H. Farrahi, M. Azadi, G. Winter, and W. Eichlseder, “A new energy-based isothermal and thermomechanical fatigue lifetime prediction model for aluminum-silicon-magnesium alloy,” Fatigue Fract. Eng. Mater. Struct., 36, No. 12, 1323–1335 (2013).CrossRefGoogle Scholar
  35. 35.
    G. H. Farrahi, M. Ghodrati, and M. Azadi, “Finite element analysis of thermal and mechanical stresses in diesel engine cylinder head using two-layer elastic-visco-plastic model,” J. Eng. Res., 28, 51–60 (2012).Google Scholar
  36. 36.
    G. H. Farrahi, A. Shamloo, M. Felfeli, and M. Azadi, “Numerical simulations of cyclic behaviors in light alloys under isothermal and thermo-mechanical fatigue loadings,” Mater. Des., 56, 245–253 (2014).CrossRefGoogle Scholar
  37. 37.
    S. Tabibian, E. Charkaluk, A. Constantinescu, et al., “TMF criteria for lost foam casting aluminum alloys,” Fatigue Fract. Eng. Mater. Struct., 36, 349–360 (2013).CrossRefGoogle Scholar
  38. 38.
    S. Tabibian, E. Charkaluk, A. Constantinescu, et al., “TMF-LCF life assessment of a lost foam casting A319 aluminum alloy,” Int. J. Fatigue, 53, 75–81 (2013).CrossRefGoogle Scholar
  39. 39.
    E. Charkaluk, A. Constantinescu, F. Szmytka, and S. Tabibian, “Probability density functions: from porosities to fatigue lifetime,” Int. J. Fatigue, 63, 127–136 (2014).CrossRefGoogle Scholar
  40. 40.
    A. F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International (2005).Google Scholar
  41. 41.
    S. S. Manson and G. R. Halford, Fatigue and Durability of Structural Materials, ASM International (2006).Google Scholar
  42. 42.
    M. Azadi, G. H. Farrahi, G. Winter, and W. Eichlseder, “Thermo-mechanical behaviors of light alloys in comparison to high temperature isothermal behaviors,” Mater. High Temp., 31, No. 1, 12–17 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Azadi
    • 1
    Email author
  • G. Winter
    • 2
  • G. H. Farrahi
    • 3
  • W. Eichlseder
    • 2
  1. 1.Faculty of Mechanical EngineeringSemnan UniversitySemnanIran
  2. 2.Faculty of Mechanical EngineeringUniversity of LeobenLeobenAustria
  3. 3.School of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations