Strength of Materials

, Volume 46, Issue 4, pp 518–525 | Cite as

Application of the Point Stress Criterion to Assess the Bond Strength of a Single-Lap Joint

  • K. S. Sajikumar
  • N. Asok Kumar
  • B. Nageswara Rao
Article

Finite element analysis has been carried out to obtain the interfacial stresses in a single lap joint using a special 6-node isoparametric element for adhesive layer. The analysis results are found to be in good agreement with the closed-form solution of Goland and Reissner. The peak normal and shear stresses found in the adhesive layer at the edges of the joint are due to stress singularity. The bond strength of the single-lap joint is estimated considering one of the stress fracture criteria known as the point stress criterion. Bond strength estimates are found to be reasonably in good agreement with existing test results.

Keywords

adhesion failure load finite element analysis point stress criterion single-lap joint 

References

  1. 1.
    L. Tong and G. P. Steven, Analysis and Design of Structural Bonded Joints, Kluwer Academic Publishers, Boston (1999).CrossRefGoogle Scholar
  2. 2.
    W. C. Carpenter, “Goland and Reissner were correct,” J. Strain Anal., 24, No. 3, 185–187 (1989).CrossRefGoogle Scholar
  3. 3.
    G. Li and P. Lee-Sullivan, “Finite element and experimental studies on single-lap balanced joints in tension,” Int. J. Adhes. Adhesiv., 21, No. 3, 211–220 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Y. Tsai and J. Morton, “An experimental investigation of nonlinear deformations in single-lap joints,” Mech. Mater., 20, 183–194 (1995).CrossRefGoogle Scholar
  5. 5.
    Q. Luo and L. Tong, “Analytical solutions for nonlinear analysis of composite single-lap adhesive joints,” Int. J. Adhes. Adhesiv., 29, No. 2, 144–154 (2009).CrossRefGoogle Scholar
  6. 6.
    L. D. R. Grant, R. D. Adams, and L. F. M. da Silva, “Experimental and numerical analysis of single-lap joints for the automotive industry,” Int. J. Adhes. Adhesiv., 29, No. 4, 405–413 (2009).CrossRefGoogle Scholar
  7. 7.
    T. R. Guess, R. E. Allred, and F. P. Gerstle, Jr., “Comparison of lap shear test specimens,” J. Test. Eval., 5, No. 3, 84–93 (1977).Google Scholar
  8. 8.
    P. Chalkley and F. Rose, “Stress analysis of double-strap bonded joints using a variational method,” Int. J. Adhes. Adhesiv., 21, No. 3, 241–247 (2001).CrossRefGoogle Scholar
  9. 9.
    H. Osnes and D. McGeorge, “Experimental and analytical strength analysis of double-lap joints for marine applications,” Composites: Part B, 40, 29–40 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Gacoin, P. Lestriez, J. Assih, et al., “Comparison between experimental and numerical study of the adhesively bonded scarf joint and double scarf joint: Influence of internal singularity created by geometry of the double scarf joint on the damage evolution,” Int. J. Adhes. Adhesiv., 29, No. 5, 572–579 (2009).CrossRefGoogle Scholar
  11. 11.
    A. F. Avila and P. de O. Bueno, “An experimental and numerical study on adhesive joints for composites,” Compos. Struct., 64, 531–537 (2004).Google Scholar
  12. 12.
    G. C. McGrath, “The performance of adhesive joints-a UK initiative,” Int. J. Adhes. Adhesiv., 17, No. 4, 339–343 (1997).CrossRefGoogle Scholar
  13. 13.
    Naveen Rastogi, B. P. Deepak and S. R. Soni, “Stress analysis codes for bonded joints in composite structures,” AIAA-97-1341 (1997), pp. 2772–2782.Google Scholar
  14. 14.
    A. Öchsner and J. Gegner, “Application of the finite element method in the tensile-shear test of adhesive technology,” Int. J. Adhes. Adhesiv., 21, No. 4, 349–353 (2001).CrossRefGoogle Scholar
  15. 15.
    L. F. M. da Silva and R. D. Adams, “Techniques to reduce the peel stresses in adhesive joints with composites,” Int. J. Adhes. Adhesiv., 27, No. 3, 227–235 (2007).CrossRefGoogle Scholar
  16. 16.
    G. P. Zou, K. Shahin, and F. Taheri, “An analytical solution for the analysis of symmetric composite adhesively bonded joints,” Compos. Struct., 65, 499–510 (2004).CrossRefGoogle Scholar
  17. 17.
    D. P. Romilly and R. J. Clark, “Elastic analysis of hybrid bonded joints and bonded composite repairs,” Compos. Struct., 82, 563–576 (2008).CrossRefGoogle Scholar
  18. 18.
    A. A. Taib, R. Boukhili, S. Achiou, and H. Boukehili, “Bonded joints with composite adherends. Part II: Finite element analysis of joggle lap joints,” Int. J. Adhes. Adhesiv., 26, No. 4, 237–248 (2006).CrossRefGoogle Scholar
  19. 19.
    D. Castagnetti and E. Dragoni, “Standard finite element techniques for efficient stress analysis of adhesive joints,” Int. J. Adhes. Adhesiv., 29, No. 2, 125–135 (2009).CrossRefGoogle Scholar
  20. 20.
    L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, and J. K. Spelt, “Analytical models of adhesively bonded joints – Part I: Literature survey,” Int. J. Adhes. Adhesiv., 29, No. 3, 319–330 (2009).CrossRefGoogle Scholar
  21. 21.
    M. Goland and E. Reissner, “The stresses in cemented joints,” J. Appl. Mech., 11, A17–A27 (1944).Google Scholar
  22. 22.
    F. Erdogan and M. Ratwani, “Stress distribution in bonded joints,” J. Compos. Mater., 5, 378–393 (1971).CrossRefGoogle Scholar
  23. 23.
    L. J. Hart-Smith, Adhesive-Bonded Scarf and Stepped-Lap Joints, NASA CR-112237 (January 1973).Google Scholar
  24. 24.
    L. J. Hart-Smith, Analysis and design of advanced composite bonded joints, NASA CR-2218 (August 1974).Google Scholar
  25. 25.
    D. J. Chang and R. Muki, “Stress distribution in a lap joint under tension-shear,” Int. J. Solids Struct., 10, 503–517 (1974).CrossRefGoogle Scholar
  26. 26.
    M. N. Reddy and P. K. Sinha, “Stresses in adhesive-bonded joints for composites,” Fibre Sci. Technol., 8, 33–47 (1975).CrossRefGoogle Scholar
  27. 27.
    T. S. Ramamurthy and A. K. Rao, “Shaping of adherends in bonded joints,” Int. J. Mech. Sci., 20, 721–727 (1978).CrossRefGoogle Scholar
  28. 28.
    U. Yuceoglu and D. P. Updike, “Stress analysis of bonded plates and joints,” J. Eng. Mech., 106, 37–56 (1980).Google Scholar
  29. 29.
    R. M. Barker and F. Hatt, “Analysis of bonded joints in vehicular structures,” AIAA J., 11, 1650–1654 (1973).CrossRefGoogle Scholar
  30. 30.
    K. G. Muthurajan, K. Sankaranarayana Samy, S. B. Tiwari, and B. Nageswara Rao, “Finite element modeling of adhesively bonded joints,” Trends Appl. Sci. Res., 1, No. 1, 25–40 (2006).CrossRefGoogle Scholar
  31. 31.
    O. C. Zienkiewicz, The Finite Element Method in Engineering Sciences, McGraw Hill, London (1971).Google Scholar
  32. 32.
    J. A. Harris and R. D. Adams, “Strength prediction of bonded single lap joints by non-linear finite element methods,” Int. J. Adhes. Adhesiv., 4, No. 2, 65–78 (1984).CrossRefGoogle Scholar
  33. 33.
    R. D. Adams, “The mechanics of bonded joints,” in: Structural Adhesives in Engineering, ImechE Conference Publications, Suffolk (1986), pp. 17–24.Google Scholar
  34. 34.
    P. K. Mallick (Ed.), Composites Engineering Handbook, Marcel Dekker, Inc. (1997).Google Scholar
  35. 35.
    C. H. Wang and P. Chalkley, “Plastic yielding of a film adhesive under multiaxial stresses,” Int. J. Adhes. Adhesiv., 20, No. 2, 155–164 (2000).CrossRefGoogle Scholar
  36. 36.
    G. D. Dean and L. Crocker, Comparison of the Measured and Predicted Deformation of an Adhesively Bonded Lap-Joint Specimen, NPL Report CMMT (A) 293 (2000).Google Scholar
  37. 37.
    A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile media,” J. Eng. Mater. Technol., 99, No. 1, 2–15 (1977).CrossRefGoogle Scholar
  38. 38.
    H. L. Groth, “A method to predict fracture in an adhesively bonded joint,” Int. J. Adhes. Adhesiv., 5, No. 1, 19–22 (1985).CrossRefGoogle Scholar
  39. 39.
    H. L. Groth, “Stress singularities and fracture at interface corners in bonded joints,” Int. J. Adhes. Adhesiv., 8, No. 2, 107–113 (1988).CrossRefGoogle Scholar
  40. 40.
    G. Fernlund and J. K. Spelt, “Failure load prediction of structural adhesive: Part 1: Analytical method,” Int. J. Adhes. Adhesiv., 11, No. 4, 213–220 (1991).CrossRefGoogle Scholar
  41. 41.
    G. Fernlund and J. K. Spelt, “Failure load prediction of structural adhesive: Part 2: Experimental results,” Int. J. Adhes. Adhesiv., 11, No. 4, 221–227 (1991).CrossRefGoogle Scholar
  42. 42.
    G. Fernlund, M. Papini, D. McCammond, and J. K. Spelt, “Fracture load predictions for adhesive joints,” Compos. Sci. Technol., 51, 587–600 (1994).CrossRefGoogle Scholar
  43. 43.
    A. J. Curley, H. Hadavinia, A. J. Kinloch, and A. C. Taylor, “Predicting the service-life of adhesivelybonded joints,” Int. J. Fract., 103, 41–69 (2000).CrossRefGoogle Scholar
  44. 44.
    W. R. Broughton, L. E. Crocker, and J. M. Urquhart, Strength of Adhesive Joints: a Parametric Study, NPL Report MATC (A) 27 (2001).Google Scholar
  45. 45.
    J. Whitney and R. Nuismer, “Stress fracture criteria for laminated composites containing stress concentrations,” J. Compos. Mater., 8, 253–265 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. S. Sajikumar
    • 1
  • N. Asok Kumar
    • 1
  • B. Nageswara Rao
    • 2
  1. 1.Faculty of Mechanical EngineeringCollege of EngineeringTrivandrumIndia
  2. 2.Faculty of Mechanical Engineering, School of Civil and Mechanical SciencesKL UniversityVaddeswaramIndia

Personalised recommendations