Advertisement

Strength of Materials

, Volume 46, Issue 2, pp 250–255 | Cite as

Strength Prediction Model of a Particle-Reinforced Shellproof Ceramic Composite

  • X. H. NiEmail author
  • C. Chen
  • X. Q. Liu
  • S. Q. Zhang
Article

On the basis of the microstructure of particle-reinforced shellproof ceramic composite, and the intergranular fracture feature, a dislocation pile-up fracture model of the small-particle ceramic composite is developed, the mechanism of formation, growth and coalescence of microcracks. The complex effect of the small particle pull-out and large particle cracking is concerned, when constructing the crack extension fracture model. Thereafter, the influence of particles’ volume fraction and matrix grain diameter on fracture strength is studied. The experimental data shows that the proposed strength prediction model is successful and can be generally applied.

Keywords

strength shellproof ceramic particle dislocation pile-up crack extension 

Notes

Acknowledgment

This material is based upon work supported by the National Natural Science Foundation of China under Grant No. 11272355.

References

  1. 1.
    D. M. Stump, “Spalling in zirconia-reinforced ceramics,” Mech. Mater., 20, 305–313 (1995).CrossRefGoogle Scholar
  2. 2.
    M. Wildan, H. J. Edrees, and A. Hendry, “Ceramic matrix composites of zirconia reinforced with metal particles,” Mater. Chem. Phys., 75, 276–283 (2002).CrossRefGoogle Scholar
  3. 3.
    H. J. Edrees, A. C. Smith, and A. Hendry, “A rule of mixtures model for sintering of particle-reinforced ceramic-matrix composites,” J. Eur. Ceram. Soc., 18, 275–278 (1998).CrossRefGoogle Scholar
  4. 4.
    J. L. Lagrange and Ph. Colomban, “Double particles reinforcement of ceramic-matrix composites prepared by a sol-gel route,” Compos. Sci. Technol., 58, 653–658 (1998).CrossRefGoogle Scholar
  5. 5.
    Y. S. Liu, L. F. Cheng, L. T. Zhang, et al., “Microstructure and properties of particle-reinforced silicon carbide and silicon nitride ceramic matrix composites prepared by chemical vapor infiltration,” Mater. Sci. Eng. A, 475, 217–223 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Szafran, K. Konopka, E. Bobryk, and K. J. Kurzydlowski, ”Ceramic matrix composites with gradient concentration of metal particles,” J. Eur. Ceram. Soc., 27, 651–654 (2007).CrossRefGoogle Scholar
  7. 7.
    I. E. Keimanis, “A review of issues in the fracture of interfacial ceramics and ceramic composites,” Mater. Sci. Eng. A, 237, 159–167 (1997).CrossRefGoogle Scholar
  8. 8.
    G. A. Gogotsi, “Fracture toughness of ceramic composites,” Ceram. Int., 29, 777–784 (2003).CrossRefGoogle Scholar
  9. 9.
    H.-Y. Yeh, H. C. Murphy, and H.-L. Yeh, “An investigation of failure criterion for new orthotropic ceramic matrix composite materials,” J. Reinf. Plast. Comp., 28, No. 4, 441–459 (2009).CrossRefGoogle Scholar
  10. 10.
    F. Pavia, A. Letertre, and W. A. Curtin, “Prediction of first matrix cracking in micro/nanohybrid brittle matrix composites,” Compos. Sci. Technol., 70, No. 6, 916–921 (2010).CrossRefGoogle Scholar
  11. 11.
    X. Q. Liu, X. H. Ni, Y. T. Liu, and B. H. Han, “Mesomechanical strength model of nano-fibers composite ceramics,” Solid State Phenom., 121-123, 1157–1160 (2007).CrossRefGoogle Scholar
  12. 12.
    X. H. Ni, T. Sun, X. Q. Liu, et al. “Size dependent strength of fiber eutectics and transformation particles composite ceramic,” Appl. Mech. Mater., 44-47, 2264–2268 (2011).Google Scholar
  13. 13.
    X. H. Ni, X. Q. Liu, B. H. Han, et al., “Micromechanical strength of particle in composite ceramic with partial debonding interphase,” Adv. Mater. Res., 146-147, 366–369 (2011).CrossRefGoogle Scholar
  14. 14.
    J. S. Zhao, Fracture Mechanics and Fracture Physics [in Chinese], 1st edition, Huazhong University of Science and Technology Press, Wuhan (2004).Google Scholar
  15. 15.
    T. H. Courtney, Mechanical Behavior of Materials, 1st edition, McGraw-Hill Education (Asia) and China Machine Press, Beijing (2004).Google Scholar
  16. 16.
    Q. X. Liu and J. F. Yang, “The ultimate stress of small grain shellproof ceramic composite,” Appl. Mech. Mater., 121-126, 524–528 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Mechanical Engineering CollegeShijiazhuangChina

Personalised recommendations