Advertisement

Strength of Materials

, Volume 46, Issue 1, pp 49–56 | Cite as

A Study of the Creep Damageability of Tubular Solid Oxide Fuel Cell

  • S. N. SklepusEmail author
  • A. A. Zolochevskii
Article

The creep damageability and long-term strength of a tubular solid oxide fuel cell are studied. The method for the solution of the initial boundary value problem of creep and damageability is based on the joint application of the R-function and the Runge-Kutta–Merson methods. An example of the calculation of the creep and long-term strength of a Siemens-Westinghouse fuel cell is given.

Keywords

solid oxide fuel cell creep damageability R-function method structure of solution 

References

  1. 1.
    A. Bieberle-Hütter, D. Beckel, A. Infortuna, et al., “A micro-solid oxide fuel cell system as battery replacement,” J. Power Sources, 177, 123–130 (2008).CrossRefGoogle Scholar
  2. 2.
    N. Hotz, S. M. Senn, and D. Poulikakos, “Exergy analysis of a solid oxide fuel cell micropowerplant,” J. Power Sources, 158, 333–347 (2006).CrossRefGoogle Scholar
  3. 3.
    J. H. Joo and G. M. Choi, “Micro-solid oxide fuel cell using thick-film ceria,” Solid State Ionics, 180, 839–842 (2009).CrossRefGoogle Scholar
  4. 4.
    J. F. Vente, S. McIntosh, W. G. Haije, and H. J. M. Bouwmeester, “Properties and performance of BaxSr1-x Co0.8Fe0.2O3-δ materials for oxygen transport membranes,” J. Solid State Electrochem., 10, 581–588 (2006).CrossRefGoogle Scholar
  5. 5.
    K. Fisher and J. R. Seume, “Impact of the temperature profile on thermal stress in a tubular solid oxide fuel cell,” J. Fuel Cell Sci. Technol., 6, 011017-1–011017-9 (2009).Google Scholar
  6. 6.
    J. Crank, The Mathematics of Diffusion, Second Edition, Oxford University Press (1975).Google Scholar
  7. 7.
    A. A. Zolochevskii, A. N. Sklepus, and S. N. Sklepus, Nonlinear Mechanics of Deformable Solids [in Russian], Biznes Investor Grupp, Kharkov (2011).Google Scholar
  8. 8.
    V. I. Krylov, V. V. Bobkov, and P. I. Monastyrnyi, Computing Methods [in Russian], Nauka, Moscow (1977).Google Scholar
  9. 9.
    V. L. Rvachev, Theory of R-Functions and Some of Its Applications [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  10. 10.
    A. Nakajo, C. Stiller, G. Härkegård, and O. Bolland, “Modeling of thermal stresses and probability of survival of tubular SOFC,” J. Power Sources, 158, 287–294 (2006).CrossRefGoogle Scholar
  11. 11.
    F. L. Lowrie and R. D. Rawlings, “Room and high temperature failure mechanisms in solid oxide fuel cell electrolytes,” J. Eur. Ceram. Soc., 20, 751–760 (2000).CrossRefGoogle Scholar
  12. 12.
    E. Lara-Curzio, “Durability and reliability of SOFC materials and components,” in: Proc. of 7th Annual SECA Workshop and Peer Review (Sept. 12–14, 2006, Philadelphia).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Podgornyi Institute of Problems of Mechanical EngineeringNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.National Technical University “Kharkov Polytechnic Institute”KharkovUkraine

Personalised recommendations