Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A concept of mechanical stability of structural steels

  • 37 Accesses

  • 1 Citations

We have developed a new approach to the evaluation of the capability of steels to resist brittle fracture based on the physical ideas concerning the micromechanism of transition of metals from the plastic state into the brittle state. Within the framework of this approach, we propose new microscopic characteristics of stability of the metal, namely, the parameter of mechanical stability and the coefficient of mechanical stability. The procedure of experimental evaluation of these parameters is described and the relationship between the coefficient of mechanical stability and standard characteristics, such as plasticity under uniaxial tension and impact toughness, is analyzed in detail. We introduce a new characteristic called the force equivalent of embrittlement, which enables us to describe, on a single scale, the embrittling action of the following factors of different physical nature: complex stressed state, stress concentration, low temperatures, and dynamical loading. We propose a criterion aimed at the description of stability of the plastic state of the metal at the tip of a macrocrack and develop a procedure of experimental determination of the value of force equivalent of embrittlement for a standard cracked specimen. For the typical representatives of low-, medium-, and high-strength structural steels considered as an example, we study the regularities of the influence of the strength of a steel on the value of the coefficient of mechanical stability. On the basis of these data, we compare structural steels from the viewpoint of their stability under the embrittling action of cracklike defects.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. M. Beremin, “A local criterion for cleavage fracture of a nuclear pressure vessel steel,” Metal Trans. A, 14, 2277–2287 (1983).

  2. 2.

    F. Mudry, “A local approach to cleavage fracture,” Nucl. Eng. Des., 105, 65–76 (1987).

  3. 3.

    G. Bernauer, W. Brocks, and W. Schmitt, “Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel,” Eng. Fract. Mech., 64, 305–325 (1999).

  4. 4.

    S. Kotrechko and Yu. Ya. Meshkov, “Physical fundamentals of a local approach to analysis of brittle fracture of metals and alloys,” Mater. Sci., 37, No. 4, 583–597 (2001).

  5. 5.

    S. A. Kotrechko, “A local approach to brittle fracture analysis and its physical interpretation,” Strength Mater., 35, No. 4, 334–345 (2003).

  6. 6.

    H. Stockl, R. Boschen, W. Schmitt, et al., “Quantification of the warm prestressing effect in a shape welded 10 MnMoNi 5-5 material,” Eng. Fract. Mech., 67, No. 2, 110–137 (2000).

  7. 7.

    B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Improved probabilistic model for fracture toughness prediction for nuclear pressure vessel steels,” Int. J. Press. Vess. Piping, 75, No. 12, 843–855 (1998).

  8. 8.

    M. Kroon and J. Faleskog, “A probabilistic model for cleavage fracture with a length scale-influence of material parameters and constraint,” Int. J. Fract., 118, 99–118 (2002).

  9. 9.

    Ya. B. Fridman, Mechanical Properties of Metals [in Russian], Mashinostroenie, Moscow (1974).

  10. 10.

    N. N. Davidenko, Dynamical Tests of Metals [in Russian], ONTI, Moscow (1936).

  11. 11.

    S. A. Kotrechko and Yu. Ya. Meshkov, “A mechanical state of polycrystals. Physical ideas,” Ukr. Fiz. Zh., 36, No. 7, 1087–1094 (1991).

  12. 12.

    S. A. Kotrechko, Yu. Ya. Meshkov, and G. S. Mettus, “On the problem of ductile and brittle states of polycrystalline metals,” Metallofizika, 12, No. 6, 3–13 (1990).

  13. 13.

    S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, and D. I. Nikonenko, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of stress concentration. Part 3. Toughness of metals and alloys,” Strength Mater., 32, No. 1, 49–62 (2000).

  14. 14.

    V. I. Vladimirov, “Actual problems of the theory of generation of dislocation cracks,” Fiz. Met. Metalloved., 30, No. 3, 450–510 (1970).

  15. 15.

    V. I. Vladimirov, Physical Nature of Fracture of Metals [in Russian], Metallurgiya, Moscow (1984).

  16. 16.

    S. A. Kotrechko, “A statistical model of brittle fracture of polycrystalline metals,” Metallofiz. Noveish. Tekhnol., 16, No. 10, 37–49 (1994).

  17. 17.

    S. A. Kotrechko, “A statistical model of brittle fracture of ferrite-pearlite steels,” Metallofiz. Noveish. Tekhnol., 23, No. 1, 103–122 (2001).

  18. 18.

    V. I. Betekhtin, V. I. Vladimirov, A. G. Kadomtsev, and A. I. Petrov, “Plastic strain and fracture of crystalline bodies. Communication 1. Strain and microcrack propagation,” Strength Mater., 11, No. 7, 708–715 (1979).

  19. 19.

    Yu. Ya. Meshkov and G. A. Pakharenko, Structure of Metal and Brittleness of Steel Articles [in Russian], Naukova Dumka, Kiev (1985).

  20. 20.

    S. R. Bordet, A. D. Karstensen, D. M. Knowles, and C. S. Wiesner, “A new statistical local criterion for cleavage fracture in steel. Pt. I: Model presentation,” Eng. Fract. Mech., 72, 435–452 (2005).

  21. 21.

    S. R. Bordet, A. D. Karstensen, D. M. Knowles, and C. S. Wiesner, “A new statistical local criterion for cleavage fracture in steel. Pt. II: Application to an offshore structural steel,” Eng. Fract. Mech., 72, 453–474 (2005).

  22. 22.

    F. Grimpe, J. Heyer, and W. Dahl, “Influence of temperature, strain rate and specimen geometry on the microscopic cleavage fracture stress,” Nucl. Eng. Des., 188, 155–160 (1999).

  23. 23.

    S. A. Kotrechko, Yu. Ya. Meshkov, D. I. Nikonenko, and G. S. Mettus, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under the conditions of stress concentration. Part 1. Experimental results,” Strength Mater., 29, No. 4, 319–327 (1997).

  24. 24.

    S. A. Kotrechko and Yu. Ya. Meshkov, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of stress concentration. Part 2. Theoretical basis,” Strength Mater., 31, No. 3, 223–231 (1999).

  25. 25.

    S. A. Kotrechko, “The critical cleavage stress and ‘brittle’ strength of polycrystalline metals,” Metallofizika, 14, No. 5, 37–41 (1992).

  26. 26.

    G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in Complex Stressed State [in Russian], Naukova Dumka, Kiev (1976).

  27. 27.

    Yu. Ya. Meshkov and T. N. Serditova, Fracture of Deformed Steel [in Russian], Naukova Dumka, Kiev (1989).

  28. 28.

    S. Kotrechko, “Physical fundamentals of a local approach to analysis of cleavage fracture,” in: I. Dlouhy (Ed.), Transferability of Fracture Mechanical Characteristics, Kluwer Academic Publishers, Dordrecht (2002), pp. 135–150.

  29. 29.

    G. Z. Wang, J. H. Chen, and G. H. Liu, “On the characteristic distance and minimum fracture toughness for cleavage fracture in a C–Mn steel,” Int. J. Fract., 118, 57–76 (2002).

  30. 30.

    I. Dlouhy, M. Holzmann, and Z. Chlup, “Fracture resistance of cast ferritic C–Mn steel for container of spent nuclear fuel,” in: I. Dlouhy (Ed.), Transferability of Fracture Mechanical Characteristics, Kluwer Academic Publishers, Dordrecht (2002), pp. 47–64.

  31. 31.

    H. J. Rathbun, G. R. Odette, T. Yamamoto, and G. E. Lucas, “Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition. A single variable experiment and database,” Eng. Fract. Mech., 73, 134–158 (2006).

  32. 32.

    H. J. Rathbun, G. R. Odette, M. Y. He, and T. Yamamoto, “Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition. A model based analysis,” Eng. Fract. Mech., 73, 2723–2747 (2006).

Download references

Author information

Correspondence to S. A. Kotrechko.

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 55–78, March–April, 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kotrechko, S.A., Meshkov, Y.Y. A concept of mechanical stability of structural steels. Strength Mater 41, 156–173 (2009). https://doi.org/10.1007/s11223-009-9117-4

Download citation

Keywords

  • plastic state
  • brittle state
  • local fracture stress
  • fracture toughness