Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The effect of crystallographic orientation on the natural vibration spectrum and fatigue limit of turbine rotor blades made of monocrystalline materials

Abstract

Based on 3D models of rotor blades made of monocrystalline materils, the influence of crystallographic orientation of material axes on the formation of natural frequency spectrum and mode shapes of the blades has been clarified. A computational-experimental method is proposed for the evaluation of fatigue limit of monocrystalline blades, which significantly reduces the test scope while improving the reliability of test results.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. M. Muravchenko, “Topical problems of dynamics of strength and reliability of aircraft engines,” Vibr. Tekhn. Technol., No. 6 (38), 2–4 (2004).

  2. 2.

    V. Skibin, V. Solonin, and A. Dul'nev, “The prospects for further development of gas turbine engines,” Gazoturb. Tekhnol., No. 2, 4–8 (2000).

  3. 3.

    R. E. Shalin, I. L. Svetlov, E. B. Kachanov, et al., Monocrystals of Nickel-Based Heat-Resistant Alloys [in Russian], Mashinostroenie, Moscow (1997).

  4. 4.

    Yu. A. Nozhnitskii and E. R. Golubovskii, “Monocrystalline rotor blades of high-temperature turbines for prospective gas turbine engines,” Aviats.-Kosm. Tekhn. Tekhnol., No. 9 (35), 117–123 (2006).

  5. 5.

    V. A. Boguslaev, F. M. Muravchenko, P. D. Zhemanyuk, et al., Technological Assurance of Performance of Gas Turbine Engine Components. Part 2. Turbine Blades [in Russian], Izd. OAO Motor-Sich, Zaporozhye (2003).

  6. 6.

    S. N. Gavrilov, “The influence of compliance in the blade butt assembly on natural frequencies of rotor blades,” Vibr. Tekhn. Technol., No. 4 (20), 61–62 (2001).

  7. 7.

    R. P. Pridorozhnyi, A. V. Sheremet'ev, and A. P. Zinkovskii, “The effect of crystallographic orientation on the natural vibration spectrum and modes of vibrations of turbine rotor blades,” Vestn. Dvigatelestr., No. 2, 42–48 (2006).

  8. 8.

    G. V. Mel'nikova, B. F. Shorr, L. A. Magerramova, et al., “The influence of monocrystal crystallographic orientation and its technological scatter on the frequency spectrum of turbine blades,” Aviats.-Kosm. Tekhn. Tekhnol., Issue 26, 140–144 (2001).

  9. 9.

    A. N. Petukhov, E. R. Golubovskii, and K. A. Basov, “Frequency characteristics and modes of vibrations of monocrystalline specimens and cooled turbine blades of various crystallographic orientations,” Aviats.-Kosm. Tekhn. Tekhnol., No. 8 (34), 50–56 (2006).

  10. 10.

    A. I. Krivko, A. I. Epishin, I. L. Svetlov, and A. I. Samoilov, “Elastic properties of single crystals of nickel alloys,” Strength Mater., 20, No. 2, 214–222 (1988).

  11. 11.

    R. P. Pridorozhnyi and A. V. Sheremet'ev, “Special features of the influence of crystallographic orientation on fatigue strength of monocrystalline rotor blades,” Aviats.-Kosm. Tekhn. Tekhnol., No. 10 (26), 55–59 (2005).

Download references

Author information

Correspondence to R. P. Pridorozhnyi.

Additional information

__________

Translated from Problemy Prochnosti, No. 5, pp. 15–27, September–October, 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pridorozhnyi, R.P., Sheremet’ev, A.V. & Zinkovskii, A.P. The effect of crystallographic orientation on the natural vibration spectrum and fatigue limit of turbine rotor blades made of monocrystalline materials. Strength Mater 40, 510–517 (2008). https://doi.org/10.1007/s11223-008-9065-4

Download citation

Keywords

  • monocrystalline rotor blade
  • crystallographic orientation
  • natural frequency spectrum
  • fatigue strength