Strength of Materials

, Volume 40, Issue 1, pp 2–6 | Cite as

Ab initio DFT study of ideal shear strength of polytypes of silicon carbide

  • Y. UmenoEmail author
  • Y. Kinoshita
  • T. Kitamura
Scientific and Technical Section


Ab initio density functional calculations are performed to investigate the ideal shear deformation of SiC polytypes (3C, 2H, 4H, and 6H). The deformation of the cubic and the hexagonal polytypes in small strain region can be well represented by the elastic properties of component Si4C-tetrahedrons. The stacking pattern in the polytypes affects strain localization, which is correlated with the generalized stacking fault energy profile of each shuffle-set plane, and the ideal shear strength. Compressive hydrostatic stress decreases the ideal shear strength, which is in contrast with the behavior of metals.


ideal strength shear deformation ab initio simulation silicon carbide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. T. B. Shaffer, Acta Cryst. B, 25, 477 (1969).CrossRefGoogle Scholar
  2. 2.
    W. J. Choyke, H. Matsunami, and G. Pensl, Silicon Carbide, Akademie Verlag, Berlin (1997).Google Scholar
  3. 3.
    W. R. L. Lambrecht, B. Segall, M. Methfessel, and M. van Schilfgaarde, Phys. Rev. B, 44, 3685 (1991).CrossRefGoogle Scholar
  4. 4.
    P. Kackell, B. Wenzien, and F. Bechstedt, Phys. Rev. B, 50, 17037 (1994).CrossRefGoogle Scholar
  5. 5.
    C. H. Park, B. H. Cheong, K. H. Lee, and K. J. Chang, Phys. Rev. B, 49, 4485 (1994).CrossRefGoogle Scholar
  6. 6.
    W. Li and T. Wang, Phys. Rev. B, 59, 3993 (1999).CrossRefGoogle Scholar
  7. 7.
    S. Ogata, J. Li, N. Hirosaki, et al., Phys. Rev. B, 70, 104104 (2004).CrossRefGoogle Scholar
  8. 8.
    Y. Umeno, Y. Kinoshita, and T. Kitamura, Model. Simul. Mater. Sci. Eng., 15, 27 (2007).CrossRefGoogle Scholar
  9. 9.
    G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993).CrossRefGoogle Scholar
  10. 10.
    G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).CrossRefGoogle Scholar
  11. 11.
    J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).CrossRefGoogle Scholar
  12. 12.
    S. Ogata, Private Communication (2004).Google Scholar
  13. 13.
    D. F. Bahr, D. E. Kramer, and W. W. Germerich, Acta Mater., 46, 3605 (1998).CrossRefGoogle Scholar
  14. 14.
    H. Ohta, H. Mura, and M. Kitano, J. Soc. Mater. Sci. Japan, 45, 1322 (1996).Google Scholar
  15. 15.
    D. Roundy and M. L. Cohen, Phys. Rev. B, 64, 212103 (2001).CrossRefGoogle Scholar
  16. 16.
    S. Ogata, J. Li, and S. Yip, Science, 298, 807 (2002).CrossRefGoogle Scholar
  17. 17.
    M. Cerny and J. Pokluda, Mater. Sci. Eng. A (in print).Google Scholar
  18. 18.
    C. R. Krenn, D. Roundy, M. L. Cohen, et al., Phys. Rev. B, 65, 134111 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  2. 2.Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations