Advertisement

Strength of Materials

, Volume 38, Issue 1, pp 84–91 | Cite as

Analysis of pulse current-induced tensile stress relaxation

  • G. V. Stepanov
  • A. I. Babutskii
  • I. A. Mameev
  • A. N. Olisov
Article

Abstract

A procedure is offered and results of experimental evaluation of high-density pulse current effects on electrical resistance and relaxation of tensile elastic stresses are presented for a number of metallic materials. Based on analysis of experimental data, plastic strain rates are shown to be influenced by tensile stresses, current density, and temperature.

Keywords

pulse current relaxation tensile stresses resistivity current density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Purcell, Electricity and Magnetism, Berkeley Physics Course, Vol. 2., McGraw-Hill Book Company (1965).Google Scholar
  2. 2.
    V. I. Spitsin and O. A. Troitskii, Electroplastic Deformation of Metals [in Russian], Nauka, Moscow (1985).Google Scholar
  3. 3.
    Yu. V. Baranov, O. A. Troitskii, Yu. S. Avraamov, and A. D. Shlyapin, Physics of Electropulse and Electroplastic Treaments and New Materials [in Russian], MGIU, Moscow (2001).Google Scholar
  4. 4.
    A. F. Sprecher, S. L. Mannan, and H. Conrad, “On the mechanisms for the electroplastic effects in metals,” Acta Met., 34, No. 7, 1145–1162 (1986).CrossRefGoogle Scholar
  5. 5.
    G. V. Stepanov, A. I. Babutskii, and I. A. Mameev, “High-density pulse current-induced unsteady stress-strain state in a long rod,” Strength Mater., 36, No. 4, 377–381 (2004).CrossRefGoogle Scholar
  6. 6.
    L. S. Novogrudskii, “Influence of the pliability of a testing machine on the resistance of metals to deformation in the case of jump-like development of their elastoplastic deformation,” Strength Mater., 32, No. 3, 300–305 (2000).Google Scholar
  7. 7.
    Ya. B. Fridman, T. K. Zilova, and B. A. Drozdovskii, Kinetics of Deformation and Fracture [in Russian], VNIIAM, Moscow (1960).Google Scholar
  8. 8.
    V. A. Strizhalo and E. V. Vorob’ev, “Simulation of low-temperature discontinuous yield by the method of additional pulse loading,” Strength Mater., 29, No. 3, 269–274 (1997).Google Scholar
  9. 9.
    W. G. Chace and H. K. Moore (Eds.), Exploding Wires, Vol. 2, Plenum Press, New York (1962).Google Scholar
  10. 10.
    M. M. Martynyuk, Phase Transitions on Pulse Heating [in Russian], Izd. Ros. Univ. Druzhby Narod. (1999).Google Scholar
  11. 11.
    Material Property Database (MPDB), MPDB v. 5.15. — Demo Version, JAHM Software, Inc.Google Scholar
  12. 12.
    G. V. Stepanov, Elastoplastic Deformation and Fracture of Materials under Pulse Loading [in Russian], Naukova Dumka, Kiev (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • G. V. Stepanov
    • 1
  • A. I. Babutskii
    • 1
  • I. A. Mameev
    • 1
  • A. N. Olisov
    • 1
  1. 1.Pisarenko Institute of Problems of StrengthNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations