A breakpoint detection in the mean model with heterogeneous variance on fixed time intervals

  • Olivier Bock
  • Xavier Collilieux
  • François Guillamon
  • Emilie LebarbierEmail author
  • Claire Pascal


This work is motivated by an application for the homogenization of global navigation satellite system (GNSS)-derived integrated water vapour series. Indeed, these series are affected by abrupt changes due to equipment changes or environmental effects. The detection and correction of the series from these changes are a crucial step before any use for climate studies. In addition to these abrupt changes, it has been observed in the series a non-stationary of the variability. We propose in this paper a new segmentation model that is a breakpoint detection in the mean model of a Gaussian process with heterogeneous variance on known time intervals. In this segmentation case, the dynamic programming algorithm used classically to infer the breakpoints cannot be applied anymore. We propose a procedure in two steps: we first estimate robustly the variances and then apply the classical inference by plugging these estimators. The performance of our proposed procedure is assessed through simulation experiments. An application to real GNSS data is presented.


Segmentation Robust estimator of the variance parameter GNSS time series 



  1. Arlot, S., Massart, P.: Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res. 10, 245–279 (2009); (electronic) Google Scholar
  2. Auger, I., Lawrence, C.: Algorithms for the optimal identification of segments neighborhoods. Bull. Math. Biol. 51, 3954 (1989)MathSciNetCrossRefGoogle Scholar
  3. Bai, J., Perron, P.: Computation and analysis of multiple structural change models. J. Appl. Econ. 18, 1–22 (2003)CrossRefGoogle Scholar
  4. Baudry, J.P., Maugis, C., Michel, B.: Slope heuristics: overview and implementation. Stat. Comput. 22(2), 455470 (2011)MathSciNetzbMATHGoogle Scholar
  5. Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6), 503515 (1954)MathSciNetCrossRefGoogle Scholar
  6. Birg, L., Massart, P.: Gaussian model selection. J. Eur. Math. Soc. 3, 203–268 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Braun, J.V., Braun, R., Müller, H.G.: Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87(2), 301–314 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Caussinus, H., Mestre, O.: Detection and correction of artificial shifts in climate series. Appl. Stat. 53, 405–425 (2004)MathSciNetzbMATHGoogle Scholar
  9. Chakar, S., Lebarbier, E., Levy-Leduc, C., Robin, S.: A robust approach for estimating change-points in the mean of an ar(1) process. Bernoulli (to appear) (2015); (arXiv:14031958)
  10. Cleynen, A., Robin, S.: Comparing change-point location in independent series. Stat. Comput. 26(1–2), 263–276 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cleynen, A., Dudoit, S., Robin, S.: Comparing segmentation methods for genome annotation based on rna-seq data. J. Agric. Biol. Environ. Stat. 19(1), 101–118 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Dee, D.P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, dP, et al.: The era-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011)CrossRefGoogle Scholar
  13. Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore, A.W., Ostini, L., Petrie, E., Roggero, M., Teferle, F.N., Olivares, G., Webb, F.H.: Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment. J. Geophys. Res. Solid Earth 118, 2397–2407 (2013). CrossRefGoogle Scholar
  14. Gazeaux, J., Lebarbier, E., Collilieux, X., Métivier, L.: Joint segmentation of multiple gps coordinate series. Journal de la Société Française de Statistique 156(4), 163–179 (2015)MathSciNetzbMATHGoogle Scholar
  15. Lai, T.L., Liu, H., Xing, H.: Autoregressive models with piecewise constant volatility and regression parameters. Stat. Sin. 15, 279–301 (2005a)MathSciNetzbMATHGoogle Scholar
  16. Lai, W., Johnson, M., Kucherlapati, R., Park, P.J.: Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21(19), 3763–3770 (2005b)CrossRefGoogle Scholar
  17. Lavielle, M.: Detection of multiple changes in a sequence of dependent variables. Stoch. Process. Their Appl. 83(1), 79–102 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Lavielle, M.: Using penalized contrasts for the change-point problem. Signal Process. 85(8), 1501–1510 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Lebarbier, E.: Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Process. 85, 717–736 (2005)CrossRefzbMATHGoogle Scholar
  20. Lévy-Leduc, C., Boistard, H., Moulines, E., Taqqu, M.S., Reisen, V.A.: Robust estimation of the scale and of the autocovariance function of Gaussian short-and long-range dependent processes. J. Time Ser. Anal. 32(2), 135–156 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Lévy-Leduc, C., Delattre, M., Mary-Huard, T., Robin, S.: Two-dimensional segmentation for analyzing hi-c data. Bioinformatics 30(17), i386–i392 (2014)CrossRefGoogle Scholar
  22. Lindau, R., Venema, V.: On the multiple breakpoint problem and the number of significant breaks in homogenization of climate records. Idojaras Q. J. Hung. Meteorol. Serv. 117(1), 1–34 (2013)Google Scholar
  23. Lu, Q., Lund, R., Lee, T.: An MDL approach to the climate segmentation problem. Ann. Appl. Stat. 4(1), 299–319 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Mestre, O., Domonkos, P., Picard, F., Auer, I., Robin, S., Lebarbier, E., Böhm, R., Aguilar, E., Guijarro, J.A., Vertacnik, G., et al.: HOMER : a homogenization software - methods and applications. IDOJARAS 117(1), 47–67 (2013)Google Scholar
  25. Ning, T., Wickert, J., Deng, Z., Heise, S., Dick, G., Vey, S., Schne, T.: Homogenized time series of the atmospheric water vapour content obtained from the gnss reprocessed data. J. Clim. 29(7), 2443–2456 (2016)CrossRefGoogle Scholar
  26. Parracho, A., Bock, O., Bastin, S.: Global IWV trends and variability in atmospheric reanalyses and GPS observations. Atmos. Chem. Phys. Discuss. (2018).
  27. Picard, F., Robin, S., Lavielle, M., Vaisse, C., Daudin, J.J.: A statistical approach for CGH microarray data analysis. BMC Bioinform. 6, 27 (2005)CrossRefGoogle Scholar
  28. Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88(424), 1273–1283 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Schroeder, M., Lockhoff, M., Forsythe, J.M., Cronk, H.Q., Vonder Haar, T.H., Bennartz, R.: The gewex water vapour assessment: results from intercomparison, trend, and homogeneity analysis of total column water vapour. J. Appl. Meteorol. Clim. 55(7), 1633–1649 (2016)CrossRefGoogle Scholar
  30. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461464 (1978)MathSciNetCrossRefGoogle Scholar
  31. Trenberth, K.E., Fasullo, J., Smith, L.: Trends and variability in column-integrated atmospheric water vapour. Clim. Dyn. 24(7–8), 741–758 (2005)CrossRefGoogle Scholar
  32. Vey, S., Dietrich, R., Fritsche, M., Rlke, A., Steigenberger, P., Rothacher, M.: On the homogeneity and interpretation of precipitable water time series derived from global gps observations. J. Geophys. Res.: Atmos. 114(D10) (2009)Google Scholar
  33. Zhang, N.R., Siegmund, D.O.: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63(1), 22–32 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Olivier Bock
    • 1
  • Xavier Collilieux
    • 1
    • 2
  • François Guillamon
    • 1
    • 3
    • 4
  • Emilie Lebarbier
    • 3
    • 4
    Email author
  • Claire Pascal
    • 1
    • 3
    • 4
  1. 1.IGN LAREG, Univ Paris DiderotParis Cedex 13France
  2. 2.Observatoire de Paris, SYRTE, CNRS, UPMCParisFrance
  3. 3.AgroParisTech UMR518Paris 5eFrance
  4. 4.INRA UMR518Paris 5eFrance

Personalised recommendations