Tree-structured modelling of varying coefficients

Abstract

The varying-coefficient model is a strong tool for the modelling of interactions in generalized regression. It is easy to apply if both the variables that are modified as well as the effect modifiers are known. However, in general one has a set of explanatory variables, and it is unknown which covariates are modified by which variables. A recursive partitioning strategy is proposed that is able to deal with this complex selection problem. The tree-structured modelling yields for each covariate, which is modified by other variables, a tree that visualizes the modified effects. The performance of the method is investigated in simulations, and two applications illustrate its usefulness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Berger, M.: TSVC: Tree-Structured Modelling of Varying Coefficients. R package version, vol. 1 (2018)

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, J.C.: Classification and Regression Trees. Wadsworth, Monterey (1984)

    Google Scholar 

  3. Bürgin, R., Ritschard, G.: Tree-based varying coefficient regression for longitudinal ordinal responses. Comput. Stat. Data Anal. 86(C), 65–80 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  4. Bürgin, R., Ritschard, G.: Coefficient-wise tree-based varying coefficient regression with vcrpart. J. Stat. Softw. 80(6), 1–33 (2017)

    Article  Google Scholar 

  5. Cameron, A.C., Trivedi, P.K.: Econometric models based on count data: comparisons and applications of some estimators and tests. J. Appl. Econom. 1(1), 29–53 (1986)

    Article  Google Scholar 

  6. Cameron, A.C., Trivedi, P.K.: Regression Analysis of Count Data. Econometric Society Monographs No. 30. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  7. Fan, J., Zhang, W.: Statistical estimation in varying coefficient models. Ann. Stat. 27(5), 1491–1518 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  8. Fan, J., Zhang, W.: Statistical methods with varying coefficient models. Stat. Interface 1(1), 179–195 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. Gerfin, M.: Parametric and semi-parametric estimation of the binary response model of labour market participation. J. Appl. Econom. 11(3), 321–339 (1996)

    Article  Google Scholar 

  10. Gertheiss, J., Tutz, G.: Regularization and model selection with categorial effect modifiers. Stat. Sin. 22(3), 957–982 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Hastie, T., Tibshirani, R.: Varying-coefficient models. J. R. Stat. Soc. B 55, 757–796 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Hofner, B., Hothorn, T., Kneib, T.: Variable selection and model choice in structured survival models. Comput. Stat. 28(3), 1079–1101 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  13. Hoover, D., Rice, J.A., Wu, C., Yang, L.: Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85(4), 809–822 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  14. Hothorn, T., Lausen, B.: On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 43(2), 121–137 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  15. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006)

    MathSciNet  Article  Google Scholar 

  16. Kauermann, G., Tutz, G.: Local likelihood estimation in varying coefficient models including additive bias correction. J. Nonparametric Stat. 12(3), 343–371 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  17. Kleiber, C., Zeileis, A.: Applied Econometrics with R. New York. ISBN: 978-0-387-77316-2. http://CRAN.R-project.org/package=AER (2008)

  18. Leng, C.: A simple approach for varying-coefficient model selection. J. Stat. Plan. Inference 139(7), 2138–2146 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  19. Lu, Y., Zhang, R., Zhu, L.: Penalized spline estimation for varying-coefficient models. Commun. Stat. Theory Methods 37(14), 2249–2261 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  20. Oelker, M.R., Gertheiss, J., Tutz, G.: Regularization and model selection with categorical predictors and effect modifiers in generalized linear models. Stat. Model. 14(2), 157–177 (2014)

    MathSciNet  Article  Google Scholar 

  21. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  22. Shih, Y.S.: A note on split selection bias in classification trees. Comput. Stat. Data Anal. 45(3), 457–466 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  23. Shih, Y.S., Tsai, H.: Variable selection bias in regression trees with constant fits. Comput. Stat. Data Anal. 45(3), 595–607 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  24. Su, X., Meneses, K., McNees, P., Johnson, W.O.: Interaction trees: exploring the differential effects of an intervention programme for breast cancer survivors. J. R. Stat. Soc. C 60(3), 457–474 (2011)

    MathSciNet  Article  Google Scholar 

  25. Wang, H., Xia, Y.: Shrinkage estimation of the varying coefficient model. J. Am. Stat. Assoc. 104(486), 747–757 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  26. Wang, J.C., Hastie, T.: Boosted varying-coefficient regression models for product demand prediction. J. Comput. Graph. Stat. 23(2), 361–382 (2014)

    MathSciNet  Article  Google Scholar 

  27. Wang, L., Li, H., Haung, J.: Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J. Am. Stat. Assoc. 103(484), 1556–1569 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  28. Wedderburn, R.W.M.: Quasilikelihood functions, generalized linear models and the Gauss–Newton method. Biometrika 61(3), 439–447 (1974)

    MathSciNet  MATH  Google Scholar 

  29. Wong, H., Guo, S., Chen, M., Wai-Cheung, I.P.: On locally weighted estimation and hypothesis testing of varying-coefficient models with missing covariates. J. Stat. Plan. Inference 139(9), 2933–2951 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  30. Wu, C., Chiang, C., Hoover, D.: Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J. Am. Stat. Assoc. 93(444), 1388–1402 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  31. Zhao, P., Xue, L.: Variable selection for semiparametric varying coefficient partially linear models. Stat. Probab. Lett. 79(20), 2148–2157 (2009)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their thorough reading and helpful suggestions for improving the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moritz Berger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (gz 16 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berger, M., Tutz, G. & Schmid, M. Tree-structured modelling of varying coefficients. Stat Comput 29, 217–229 (2019). https://doi.org/10.1007/s11222-018-9804-8

Download citation

Keywords

  • Varying-coefficient models
  • Interactions
  • Recursive partitioning
  • Tree-based models