Accurate and efficient numerical calculation of stable densities via optimized quadrature and asymptotics

Abstract

Stable distributions are an important class of infinitely divisible probability distributions, of which two special cases are the Cauchy distribution and the normal distribution. Aside from a few special cases, the density function for stable distributions has no known analytic form and is expressible only through the variate’s characteristic function or other integral forms. In this paper, we present numerical schemes for evaluating the density function for stable distributions, its gradient, and distribution function in various parameter regimes of interest, some of which had no preexisting efficient method for their computation. The novel evaluation schemes consist of optimized generalized Gaussian quadrature rules for integral representations of the density function, complemented by asymptotic expansions near various values of the shape and argument parameters. We report several numerical examples illustrating the efficiency of our methods. The resulting code has been made available online.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32, 1761–1788 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  2. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943)

    MathSciNet  Article  MATH  Google Scholar 

  3. Chavanis, P.: Statistics of the gravitational force in various dimensions of space: from Gaussian to Lévy laws. Eur. Phys. J. B 70(3), 413–433 (2009)

    Article  Google Scholar 

  4. Dahlquist, G., Björck, A.: Numerical Methods. Dover, New York (2003)

    Google Scholar 

  5. Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun Guide. Pafnuty, Oxford (2014)

    Google Scholar 

  6. Iserles, A., Nørsett, S., Olver, S.: Highly oscillatory quadrature: the story so far. In Numerical Mathematics and Advanced Applications, pp. 97–118. Springer (2006)

  7. Kölbig, K.S., Schorr, B.: A program package for the Landau distribution. Comput. Phys. Commun. 31, 97–111 (1984)

    Article  Google Scholar 

  8. Ma, J., Rokhlin, V., Wandzura, S.: Generalized Gaussian quadrature rules for systems of arbitrary functions. SIAM J. Numer. Anal. 33, 971–996 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  9. Matsui, M., Takemura, A.: Some improvements in numerical evaluation of symmetric stable density and its derivatives. Multivar. Anal. 35, 149–172 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Mittnik, S., Rachev, S.T.: Modeling asset returns with alternative stable distributions. Econom. Rev. 12(3), 261–330 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  11. Nikias, C.L., Shao, M.: Signal Processing with Alpha-Stable Distributions and Applications. Wiley, New York (1995)

    Google Scholar 

  12. Nolan, J.P.: Numerical calculation of stable densities and distribution functions. Commun. Statist. Stoch. Models 13(4), 759–774 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  13. Nolan, J.P.: Maximum likelihood estimation and diagnostics for stable distributions. Chapter Lévy Processes: Theory and Applications. Birkhäuser, Boston (2001)

  14. Nolan, J.P.: Modeling financial data with stable distributions. In: Rachev, S.T. (ed.) Handbook of Heavy Tailed Distributions in Finance, pp. 105–130. Elsevier/North Holland, New York (2003)

    Google Scholar 

  15. Nolan, J.P.: Stable Distributions—Models for Heavy Tailed Data. Birkhauser, Boston (2015, in progress, chapter 1 online at academic2.american.edu/\(\sim \)jpnolan)

  16. Olver, S.: Numerical approximation of highly oscillatory integrals. PhD thesis, University of Cambridge (2008)

  17. Olver, S.: Fast, numerically stable computation of oscillatory integrals with stationary points. Bit. Numer. Math. 50, 149–171 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  18. Press, W.H., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  19. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  20. Shephard, N.G.: From characteristic function to distribution function: a simple framework for the theory. Econom. Theory 7, 519–529 (1991)

    MathSciNet  Article  Google Scholar 

  21. Yarvin, N., Rokhlin, V.: Generalized Gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput. 20, 699–718 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  22. Zolotarev, V.M.: One-dimensional stable distributions. American Mathematical Society, Providence (1986)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sinan Güntürk and Margaret Wright for several useful conversations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael O’Neil.

Additional information

Research partially supported by AIG-NYU Award #A15-0098-001.

Appendix: Gradients of series expansions

Appendix: Gradients of series expansions

Here we provide formulae for the derivatives of the series expansions presented in Sect. 2.4. From (2.18),

$$\begin{aligned}&\partial _x f(x;\alpha , \beta ) \nonumber \\&\quad = \frac{1}{\alpha \pi } \sum _{k=0}^\infty \frac{ \Gamma ( \frac{k+2}{\alpha } )}{ \Gamma ( k )} (1+\zeta ^2)^{ - \frac{k+2}{ 2\alpha }}\nonumber \\&\qquad \times \sin \left( \left( \pi /2 + (\arctan \zeta )/\alpha \right) (k+2) \right) (x - \zeta )^{k}. \end{aligned}$$
(5.1)

Using an error bound analogous to the ones in Sect. 2.3, we have that

$$\begin{aligned} |x-\zeta | \le C_n^0(\alpha ) := \left[ \epsilon \alpha \pi (1+\zeta ^2)^{\frac{n+2}{2\alpha }} \frac{\Gamma (n)}{\Gamma ( \frac{n+2}{\alpha })} \right] ^{1/n}. \end{aligned}$$
(5.2)

By differentiating (2.25), we attain

$$\begin{aligned} \partial _x f(x,\alpha , \beta )= & {} \frac{\alpha }{\pi } \sum _{k=1}^\infty (-1)^{k} \frac{ (\alpha k + 1) \Gamma (\alpha k)}{\Gamma (k)} (1+\zeta ^2)^{k/2} \nonumber \\&\times \sin ((\pi \alpha - \arctan \zeta ) k) (x-\zeta )^{-\alpha k-2},\nonumber \\ \end{aligned}$$
(5.3)

whose radius of convergence to precision \(\epsilon \) we estimate by

$$\begin{aligned}&|x-\zeta | \ge C_{n-1}^\infty (\alpha )\nonumber \\&\quad := \left[ \frac{\alpha }{\pi \epsilon } (1+\zeta ^2)^{\frac{n}{2} } \frac{ (\alpha n + 1)\Gamma (\alpha n)}{\Gamma ( n ) } \right] ^{1/(\alpha n-2)}. \end{aligned}$$
(5.4)

For the parameter ranges where there is no convenient formulation of the derivatives, we can use a finite difference approximation of the form

$$\begin{aligned}&\partial _x f(x)\nonumber \\= & {} \frac{ -f(x+2h) + 8 f(x+h) - 8 f(x-h) + f(x-2h) }{12h} \nonumber \\&+ \, O(h^4). \end{aligned}$$
(5.5)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ament, S., O’Neil, M. Accurate and efficient numerical calculation of stable densities via optimized quadrature and asymptotics. Stat Comput 28, 171–185 (2018). https://doi.org/10.1007/s11222-017-9725-y

Download citation

Keywords

  • Stable distributions
  • \(\alpha \)-Stable
  • Generalized Gaussian quadrature
  • Infinitely divisible distributions
  • Numerical quadrature