Advertisement

Statistics and Computing

, Volume 28, Issue 1, pp 87–101 | Cite as

Bayesian non-parametric modeling for integro-difference equations

  • Robert RichardsonEmail author
  • Athanasios Kottas
  • Bruno Sansó
Article

Abstract

Integro-difference equations (IDEs) provide a flexible framework for dynamic modeling of spatio-temporal data. The choice of kernel in an IDE model relates directly to the underlying physical process modeled, and it can affect model fit and predictive accuracy. We introduce Bayesian non-parametric methods to the IDE literature as a means to allow flexibility in modeling the kernel. We propose a mixture of normal distributions for the IDE kernel, built from a spatial Dirichlet process for the mixing distribution, which can model kernels with shapes that change with location. This allows the IDE model to capture non-stationarity with respect to location and to reflect a changing physical process across the domain. We address computational concerns for inference that leverage the use of Hermite polynomials as a basis for the representation of the process and the IDE kernel, and incorporate Hamiltonian Markov chain Monte Carlo steps in the posterior simulation method. An example with synthetic data demonstrates that the model can successfully capture location-dependent dynamics. Moreover, using a data set of ozone pressure, we show that the spatial Dirichlet process mixture model outperforms several alternative models for the IDE kernel, including the state of the art in the IDE literature, that is, a Gaussian kernel with location-dependent parameters.

Keywords

Dirichlet process mixtures Hamiltonian Markov chain Monte Carlo Hermite polynomials Spatial Dirichlet process 

Notes

Acknowledgements

This research is part of the first author’s Ph.D. dissertation completed at University of California, Santa Cruz. A. Kottas was supported in part by the National Science Foundation under award DMS 1310438. B. Sansó was supported in part by the National Science Foundation under award DMS 1513076. The authors wish to thank an Associate Editor and two reviewers for constructive feedback and for comments that improved the presentation of the material in the paper.

References

  1. Brown, P.E., Roberts, G.O., Kåresen, K.F., Tonellato, S.: Blur-generated non-separable space-time models. J. R. Stat. Soc. 62, 847–860 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Chen, T., Fox, E.B., Guestrin, C.: Stochastic gradient Hamiltonian Monte Carlo. In: ICML, pp. 1683–1691 (2014)Google Scholar
  3. Cressie, N.: Statistics for Spatial Data. Wiley, New York (1993)zbMATHGoogle Scholar
  4. Cressie, N., Huang, H.-C.: Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Stat. Assoc. 94, 1330–1339 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, New York (2011)zbMATHGoogle Scholar
  6. Frühwirth-Schnatter, S.: Data augmentation and dynamic linear models. J. Time Ser. Anal. 15, 183–202 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Gelfand, A.E., Kottas, A., MacEachern, S.N.: Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Am. Stat. Assoc. 100, 1021–1035 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)CrossRefGoogle Scholar
  9. Geweke, J. et al.: Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, vol. 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis(1991)Google Scholar
  10. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. 73, 123–214 (2011)MathSciNetCrossRefGoogle Scholar
  11. Gneiting, T., Stanberry, L.I., Grimit, E.P., Held, L., Johnson, N.A.: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. Test 17, 211–235 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Heine, V.: Models for two-dimensional stationary stochastic processes. Biometrika 42, 170–178 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Higdon, D.: A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Stat. 5, 173–190 (1998)CrossRefGoogle Scholar
  14. Hooten, M.B., Wikle, C.K.: A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian collared-dove. Environ. Ecol. Stat. 15, 59–70 (2008)MathSciNetCrossRefGoogle Scholar
  15. Jones, R.H., Zhang, Y.: Models for continuous stationary space-time processes. In: Gregoire, T.G., Brillinger, D.R., Diggle, P.J., Russek-Cohen, E., Warren, W.G., Wolfinger, R.D. (eds.) Modelling Longitudinal and Spatially Correlated Data, pp. 289–298. Springer, New York (1997)CrossRefGoogle Scholar
  16. Kot, M., Lewis, M.A., van den Driessche, P.: Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996)CrossRefGoogle Scholar
  17. Kottas, A., Duan, J.A., Gelfand, A.E.: Modeling disease incidence data with spatial and spatio temporal Dirichlet process mixtures. Biom. J. 50, 29–42 (2008)MathSciNetCrossRefGoogle Scholar
  18. Ma, C.: Nonstationary covariance functions that model space-time interactions. Stat. Probab. Lett. 61, 411–419 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Neal, R.M.: MCMC using Hamiltonian dynamics. Handb. Markov Chain Mt. Carlo 2, 113–162 (2011)MathSciNetzbMATHGoogle Scholar
  20. Neubert, M.G., Kot, M., Lewis, M.A.: Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48, 7–43 (1995)CrossRefzbMATHGoogle Scholar
  21. Nolan, J.: Stable Distributions: models for Heavy-Tailed Data. Birkhauser, New York (2003)Google Scholar
  22. Olver, F.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)Google Scholar
  23. Richardson, R., Kottas, A., Sansó, B.: Flexible Integro-Difference Equation Modeling for Spatio-Temporal Data, To appear in Computational Statistics and Data Analysis (2017)Google Scholar
  24. Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)MathSciNetzbMATHGoogle Scholar
  25. Smith, B.J.: boa: an R package for MCMC output convergence assessment and posterior inference. J. Stat. Softw. 21, 1–37 (2007)CrossRefGoogle Scholar
  26. Storvik, G., Frigessi, A., Hirst, D.: Stationary space-time Gaussian fields and their time autoregressive representation. Stat. Model. 2, 139–161 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688 (2011)Google Scholar
  28. West, M., Harrison, J.: Bayesian Forecasting and Dynamic Models, 2nd edn. Springer, New York (1997)zbMATHGoogle Scholar
  29. Wikle, C.K.: A kernel-based spectral model for non-Gaussian spatio-temporal processes. Stat. Model. 2, 299–314 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Wikle, C.K., Cressie, N.: A dimension-reduced approach to space-time Kalman filtering. Biometrika 86, 815–829 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Wikle, C.K., Hooten, M.B.: A general science-based framework for dynamical spatio-temporal models. Test 19, 417–451 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Wikle, C.K., Holan, S.H.: Polynomial nonlinear spatio-temporal integro-difference equation models. J. Time Ser. Anal. 32, 339–350 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Xu, K., Wikle, C.K., Fox, N.I.: A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J. Am. Stat. Assoc. 100, 1133–1144 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of StatisticsBrigham Young UniversityProvoUSA
  2. 2.Department of Applied Mathematics and StatisticsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations