Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification

Abstract

The paper considers non-parametric maximum likelihood estimation of the failure time distribution for interval-censored data subject to misclassification. Such data can arise from two types of observation scheme; either where observations continue until the first positive test result or where tests continue regardless of the test results. In the former case, the misclassification probabilities must be known, whereas in the latter case, joint estimation of the event-time distribution and misclassification probabilities is possible. The regions for which the maximum likelihood estimate can only have support are derived. Algorithms for computing the maximum likelihood estimate are investigated and it is shown that algorithms appropriate for computing non-parametric mixing distributions perform better than an iterative convex minorant algorithm in terms of time to absolute convergence. A profile likelihood approach is proposed for joint estimation. The methods are illustrated on a data set relating to the onset of cardiac allograft vasculopathy in post-heart-transplantation patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrevaya, J., Huang, J.: On the bootstrap of the maximum score estimator. Econmetrica 73, 1175–1204 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  2. Balasubramanian, R., Lagakos, S.: Estimation of a failure time distribution based on imperfect diagnostic tests. Biometrika 90, 171–182 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  3. Banerjee, M., Wellner, J.: Likelihood ratio tests for monotone functions. Ann. Stat. 29, 1699–1731 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  4. Banerjee, M., Wellner, J.: Confidence intervals for current status data. Scand. J. Stat. 32, 405–424 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  5. Barlow, R., Bartholomew, D., Bremner, J., Brunk, H.: Statistical Inference Under Order Restrictions. The Theory and Application of Isotonic Regression. Wiley, New York (1972)

    Google Scholar 

  6. Betensky, R., Rabinowitz, D., Tsiatis, A.: Computationally simple accelerated failure time regression for interval censored data. Biometrika 88, 703–711 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  7. Böhning, D.: Numerical estimation of a probability measure. J. Stat. Plan. Inference 11, 57–69 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  8. Böhning, D., Schlattmann, P., Dietz, E.: Interval censored data: a note on the nonparametric maximum likelihood estimator of the distribution function. Biometrika 83, 462–466 (1996)

    Article  MATH  Google Scholar 

  9. Espeland, M., Platt, O., Gallagher, D.: Joint estimation of incidence and diagnostic error rates from irregular longitudinal data. J. Am. Stat. Assoc. 84, 972–979 (1989)

    Article  Google Scholar 

  10. Frydman, H., Szarek, M.: Nonparametric estimation in a Markov ’illness-death’ process from interval censored observations with missing intermediate transition status. Biometrics 65, 143–151 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  11. Groeneboom, P., Wellner, J.A.: Information Bounds and Nonparametric Maximum Likelihood Estimation, Springer Science & Business Media, vol. 19. Birkhäuser, Basel (1992)

    Google Scholar 

  12. Grüger, J., Kay, R., Schumacher, M.: The validity of inferences based on incomplete observations in disease state models. Biometrics 47, 595–605 (1991)

    Article  Google Scholar 

  13. Jongbloed, G.: The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Stat. 7(3), 310–321 (1998)

    MathSciNet  Google Scholar 

  14. Laird, N.: Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Stat. Assoc. 73, 805–811 (1978)

    Article  MATH  Google Scholar 

  15. Lawson, C., Hanson, R.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  16. Lesperance, M., Kalbfleisch, J.: An algorithm for computing the nonparametric mle of a mixing distribution. J. Am. Stat. Assoc. 87, 120–126 (1992)

    Article  MATH  Google Scholar 

  17. Lindsay, B.G.: The geometry of mixture likelihoods: a general theory. Ann. Stat. 11(1), 86–94 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  18. Maathuis, M., Hudgens, M.: Nonparametric inference for competing risks current status data with continuous, discrete or grouped observation times. Biometrika 98, 325–340 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  19. McKeown, K., Jewell, N.: Misclassification of current status data. Lifetime Data Anal. 16, 215–230 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  20. Murphy, S., van der Vaart, A.: Semiparametric likelihood ratio inference. Ann. Stat. 25, 1471–1509 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  21. Ng, M.P.: A modification of Peto’s nonparametric estimation of survival curves for interval-censored data. Biometrics 58, 439–442 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  22. Politis, D., Romano, J.: Large sample confidence regions based on subsamples under minimal assumptions. Ann. Stat. 22, 2031–2050 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  23. Rabinowitz, D., Tsiatis, A., Aragon, J.: Regression with interval-censored data. Biometrika 82, 501–513 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  24. Richardson, B., Hughes, J.: Product limit estimation for infectious disease data when the diagnostic test for the outcome is measured with uncertainty. Biostatistics 1, 341–354 (2000)

  25. Sal y Rosas, V., Hughes, J.: Nonparametric and semiparametric analysis of current status data subject to outcome misclassification. Stat. Commun. Infect. Dis. 3(1), 7 (2011)

    MathSciNet  Google Scholar 

  26. Sen, B., Xu, G.: Model based bootstrap mmethod for interval censored data. Comput. Stat. Data Anal. 81, 121–129 (2015)

    Article  Google Scholar 

  27. Sharples, L.D., Jackson, C.H., Parameshwar, J., Wallwork, J., Large, S.R.: Diagnostic accuracy of coronary angiography and risk factors for postheart-transplant cardiac allograft vasculopathy. Transplantation 76(4), 679–682 (2003)

    Article  Google Scholar 

  28. Tang, R., Banerjee, M., Kosorok, M.: Likelihood based inference for current status data on a grid: a boundary phenomenon and an adaptive inference procedure. Ann. Stat. 40, 45–72 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  29. Teeple, E.A., Brown, E.R.: Adjusting for time-dependent sensitivity in an illness-death model, with application to mother-to-child transmission of hiv. Stat. Med. 34, 1277–1292 (2015)

    MathSciNet  Article  Google Scholar 

  30. Turnbull, B.: The empirical distribution function with arbitrarily grouped, censored and truncated data. J. R. Stat. Soc. Ser. B 38, 290–295 (1976)

    MathSciNet  MATH  Google Scholar 

  31. van de Geer, S.: Asymtotic theory for maximum likelihood in nonparametric mixture models. Comput. Stat. Data Anal. 41, 453–464 (2003)

    Article  MATH  Google Scholar 

  32. Wang, Y.: On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution. J. R. Stat. Soc. Ser. B 69, 185–198 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  33. Wang, Y.: Maximum likelihood computation for fitting semiparametric mixture models. Stat. Comput. 20, 75–86 (2010)

    MathSciNet  Article  Google Scholar 

  34. Wellner, J., Zhan, Y.: A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data. J. Am. Stat. Assoc. 92, 945–959 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  35. Zhu, L., Tong, X., Sun, J.: A transformation approach for the analysis of interval-censored failure time data. Lifetime Data Anal. 14, 167–178 (2008)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Titman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Titman, A.C. Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification. Stat Comput 27, 1585–1593 (2017). https://doi.org/10.1007/s11222-016-9705-7

Download citation

Keywords

  • Interval-censored data
  • NPMLE
  • Misclassification
  • Directional derivatives