Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification

  • 632 Accesses

  • 1 Citations

Abstract

The paper considers non-parametric maximum likelihood estimation of the failure time distribution for interval-censored data subject to misclassification. Such data can arise from two types of observation scheme; either where observations continue until the first positive test result or where tests continue regardless of the test results. In the former case, the misclassification probabilities must be known, whereas in the latter case, joint estimation of the event-time distribution and misclassification probabilities is possible. The regions for which the maximum likelihood estimate can only have support are derived. Algorithms for computing the maximum likelihood estimate are investigated and it is shown that algorithms appropriate for computing non-parametric mixing distributions perform better than an iterative convex minorant algorithm in terms of time to absolute convergence. A profile likelihood approach is proposed for joint estimation. The methods are illustrated on a data set relating to the onset of cardiac allograft vasculopathy in post-heart-transplantation patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrevaya, J., Huang, J.: On the bootstrap of the maximum score estimator. Econmetrica 73, 1175–1204 (2005)

  2. Balasubramanian, R., Lagakos, S.: Estimation of a failure time distribution based on imperfect diagnostic tests. Biometrika 90, 171–182 (2003)

  3. Banerjee, M., Wellner, J.: Likelihood ratio tests for monotone functions. Ann. Stat. 29, 1699–1731 (2001)

  4. Banerjee, M., Wellner, J.: Confidence intervals for current status data. Scand. J. Stat. 32, 405–424 (2005)

  5. Barlow, R., Bartholomew, D., Bremner, J., Brunk, H.: Statistical Inference Under Order Restrictions. The Theory and Application of Isotonic Regression. Wiley, New York (1972)

  6. Betensky, R., Rabinowitz, D., Tsiatis, A.: Computationally simple accelerated failure time regression for interval censored data. Biometrika 88, 703–711 (2001)

  7. Böhning, D.: Numerical estimation of a probability measure. J. Stat. Plan. Inference 11, 57–69 (1985)

  8. Böhning, D., Schlattmann, P., Dietz, E.: Interval censored data: a note on the nonparametric maximum likelihood estimator of the distribution function. Biometrika 83, 462–466 (1996)

  9. Espeland, M., Platt, O., Gallagher, D.: Joint estimation of incidence and diagnostic error rates from irregular longitudinal data. J. Am. Stat. Assoc. 84, 972–979 (1989)

  10. Frydman, H., Szarek, M.: Nonparametric estimation in a Markov ’illness-death’ process from interval censored observations with missing intermediate transition status. Biometrics 65, 143–151 (2009)

  11. Groeneboom, P., Wellner, J.A.: Information Bounds and Nonparametric Maximum Likelihood Estimation, Springer Science & Business Media, vol. 19. Birkhäuser, Basel (1992)

  12. Grüger, J., Kay, R., Schumacher, M.: The validity of inferences based on incomplete observations in disease state models. Biometrics 47, 595–605 (1991)

  13. Jongbloed, G.: The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Stat. 7(3), 310–321 (1998)

  14. Laird, N.: Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Stat. Assoc. 73, 805–811 (1978)

  15. Lawson, C., Hanson, R.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)

  16. Lesperance, M., Kalbfleisch, J.: An algorithm for computing the nonparametric mle of a mixing distribution. J. Am. Stat. Assoc. 87, 120–126 (1992)

  17. Lindsay, B.G.: The geometry of mixture likelihoods: a general theory. Ann. Stat. 11(1), 86–94 (1983)

  18. Maathuis, M., Hudgens, M.: Nonparametric inference for competing risks current status data with continuous, discrete or grouped observation times. Biometrika 98, 325–340 (2011)

  19. McKeown, K., Jewell, N.: Misclassification of current status data. Lifetime Data Anal. 16, 215–230 (2010)

  20. Murphy, S., van der Vaart, A.: Semiparametric likelihood ratio inference. Ann. Stat. 25, 1471–1509 (1997)

  21. Ng, M.P.: A modification of Peto’s nonparametric estimation of survival curves for interval-censored data. Biometrics 58, 439–442 (2002)

  22. Politis, D., Romano, J.: Large sample confidence regions based on subsamples under minimal assumptions. Ann. Stat. 22, 2031–2050 (1994)

  23. Rabinowitz, D., Tsiatis, A., Aragon, J.: Regression with interval-censored data. Biometrika 82, 501–513 (1995)

  24. Richardson, B., Hughes, J.: Product limit estimation for infectious disease data when the diagnostic test for the outcome is measured with uncertainty. Biostatistics 1, 341–354 (2000)

  25. Sal y Rosas, V., Hughes, J.: Nonparametric and semiparametric analysis of current status data subject to outcome misclassification. Stat. Commun. Infect. Dis. 3(1), 7 (2011)

  26. Sen, B., Xu, G.: Model based bootstrap mmethod for interval censored data. Comput. Stat. Data Anal. 81, 121–129 (2015)

  27. Sharples, L.D., Jackson, C.H., Parameshwar, J., Wallwork, J., Large, S.R.: Diagnostic accuracy of coronary angiography and risk factors for postheart-transplant cardiac allograft vasculopathy. Transplantation 76(4), 679–682 (2003)

  28. Tang, R., Banerjee, M., Kosorok, M.: Likelihood based inference for current status data on a grid: a boundary phenomenon and an adaptive inference procedure. Ann. Stat. 40, 45–72 (2012)

  29. Teeple, E.A., Brown, E.R.: Adjusting for time-dependent sensitivity in an illness-death model, with application to mother-to-child transmission of hiv. Stat. Med. 34, 1277–1292 (2015)

  30. Turnbull, B.: The empirical distribution function with arbitrarily grouped, censored and truncated data. J. R. Stat. Soc. Ser. B 38, 290–295 (1976)

  31. van de Geer, S.: Asymtotic theory for maximum likelihood in nonparametric mixture models. Comput. Stat. Data Anal. 41, 453–464 (2003)

  32. Wang, Y.: On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution. J. R. Stat. Soc. Ser. B 69, 185–198 (2007)

  33. Wang, Y.: Maximum likelihood computation for fitting semiparametric mixture models. Stat. Comput. 20, 75–86 (2010)

  34. Wellner, J., Zhan, Y.: A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data. J. Am. Stat. Assoc. 92, 945–959 (1997)

  35. Zhu, L., Tong, X., Sun, J.: A transformation approach for the analysis of interval-censored failure time data. Lifetime Data Anal. 14, 167–178 (2008)

Download references

Author information

Correspondence to Andrew C. Titman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Titman, A.C. Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification. Stat Comput 27, 1585–1593 (2017). https://doi.org/10.1007/s11222-016-9705-7

Download citation

Keywords

  • Interval-censored data
  • NPMLE
  • Misclassification
  • Directional derivatives