Skip to main content
Log in

Prior specification of neighbourhood and interaction structure in binary Markov random fields

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We formulate a prior distribution for the energy function of stationary binary Markov random fields (MRFs) defined on a rectangular lattice. In the prior we assign distributions to all parts of the energy function. In particular we define priors for the neighbourhood structure of the MRF, what interactions to include in the model, and for potential values. We define a reversible jump Markov chain Monte Carlo (RJMCMC) procedure to simulate from the corresponding posterior distribution when conditioned to an observed scene. Thereby we are able to learn both the neighbourhood structure and the parametric form of the MRF from the observed scene. We circumvent evaluations of the intractable normalising constant of the MRF when running the RJMCMC algorithm by adopting a previously defined approximate auxiliary variable algorithm. We demonstrate the usefulness of our prior in two simulation examples and one real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Arnesen, P., Tjelmeland, H.: Fully Bayesian binary Markov random field models: prior specification and posterior simulation. Scand. J. Stat. 42, 967–987 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Augustin, N.H., Mugglestone, M.A., Buckland, S.T.: An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33, 339–347 (1996)

    Article  Google Scholar 

  • Austad, H.M.: Approximations of binary Markov random fields, Ph.D. thesis, Norwegian University of Science and Technology. Thesis number 292:2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14922 (2011)

  • Austad, H.M., Tjelmeland, H.: Approximate computations for binary Markov random fields and their use in Bayesian models. Technical report, Submitted (2016)

  • Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  • Besag, J.: Statistical analysis of non-lattice data. The Statistician 24, 179–195 (1975)

    Article  Google Scholar 

  • Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B 48, 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  • Buckland, S.T., Elston, D.A.: Empirical models for the spatial distribution of wildlife. J. Appl. Ecol. 30, 478–495 (1993)

    Article  Google Scholar 

  • Caimo, A., Friel, N.: Bayesian inference for exponential random graph models. Soc. Netw. 33, 41–55 (2011)

    Article  Google Scholar 

  • Celeux, G., Hurn, M.A., Robert, C.P.: Computational and inferential difficulties with mixture posterior distributions. J. Am. Stat. Assoc. 95, 957–970 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Clifford, P.: Markov random fields in statistics. In: Grimmett, G., Welsh, D.J. (eds.) Disorder in Physical Systems, A Volume in Honour of John M. Hammersley. Oxford University Press, New York (1990)

    Google Scholar 

  • Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91, 883–904 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N.A.: Statistics for Spatial Data, 2nd edn. Wiley, New York (1993)

    MATH  Google Scholar 

  • Cressie, N., Davidson, J.L.: Image analysis with partially ordered Markov models. Comput. Stat. Data Anal. 29, 1–26 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Descombes, X., Mangin, J., Pechersky, E. and Sigelle, M.: Fine structures preserving Markov model for image processing. In: Proceedings of 9th SCIA 95, Uppsala, pp. 349–356 (1995)

  • Everitt, R.G.: Bayesian parameter estimation for latent Markov random fields and social networks. J. Comput. Graph. Stat. 21, 940–960 (2012)

    Article  MathSciNet  Google Scholar 

  • Friel, N., Rue, H.: Recursive computing and simulation-free inference for general factorizable models. Biometrika 94(3), 661–672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Friel, N., Pettitt, A.N., Reeves, R., Wit, E.: Bayesian inference in hidden Markov random fields for binary data defined on large lattices. J. Comput. Graph. Stat. 18(2), 243–261 (2009)

    Article  MathSciNet  Google Scholar 

  • Geyer, C.J., Thompson, E.A.: Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stat. Soc. Ser. B 54(3), 657–699 (1992)

    MathSciNet  Google Scholar 

  • Grabisch, M., Marichal, L.-L., Roubens, M.: Equivalent representation of set function. Math. Oper. Res. 25, 157–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading, MA (1988)

    MATH  Google Scholar 

  • Hammer, P., Holzman, R.: Approximations of pseudo-Boolean functions; application to game theory. Methods Models Oper. Res. 36, 3–21 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Heikkinen, J., Högmander, H.: Fully Bayesian approach to image restoration with an application in biogeography. Appl. Stat. 43, 569–582 (1994)

    Article  MATH  Google Scholar 

  • Higdon, D.M., Bowsher, J.E., Johnsen, V.E., Turkington, T.G., Gilland, D.R., Jaszczak, R.J.: Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE Trans. Med. Imaging 16, 516–526 (1997)

    Article  Google Scholar 

  • Hurn, M., Husby, O. and Rue, H.: .A tutorial on image analysis. In: Møller J. (ed.), Spatial Statistics and Computational Methods. Lecture Notes in Statistics, vol. 173, pp. 87–141, Springer, New York (2003)

  • Kindermann, R., Snell, J.L.: Markov Random Fields and Their Applications. American Mathematical Society, Providence, Rhode Island (1980)

    Book  MATH  Google Scholar 

  • Lauritzen, S.L.: Graphical Models. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  • Lyne, A.M., Girolami, M., Atchade, Y., Strathmann, H., Simpson, D.: On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Stat. Sci. 30, 443–467 (2015)

    Article  MathSciNet  Google Scholar 

  • McGrory, C.A., Pettitt, A.N., Reeves, R., Griffin, M., Dwyer, M.: Variational Bayes and the reduced dependence approximation for the autologistic model on an irregular grid with applications. J. Comput. Graph. Stat. 21, 781–796 (2012)

    Article  MathSciNet  Google Scholar 

  • Møller, J., Pettitt, A.N., Reeves, R., Berthelsen, K.K.: An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93, 451–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, I., Ghahramani, Z. and MacKay, D.: MCMC for doubly-intractable distributions. In: Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-06), pp. 359–366, AUAI Press, Arlington, Virginia (2006)

  • Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Qian, W., Titterington, D.M.: Multidimensional Markov chain models for image textures. J. R. Stat. Soc. Ser. B 53(3), 661–674 (1991)

    MathSciNet  MATH  Google Scholar 

  • Tjelmeland, H., Austad, H.M.: Exact and approximate recursive calculations for binary Markov random fields defined on graphs. J. Comput. Graph. Stat. 21, 758–780 (2012)

    Article  MathSciNet  Google Scholar 

  • Tjelmeland, H., Besag, J.: Markov random fields with higher order interactions. Scand. J. Stat. 25, 415–433 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Toftaker, H.: Modelling and parameter estimation for discrete random fields and spatial point processes, PhD thesis, Norwegian University of Science and Technology. Thesis number 200:2013. http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:662513 (2013)

  • Walker, S.: Posterior sampling when the normalizing constant is unknown. Commun. Stat. Simul. Comput. 40, 784–792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkon Tjelmeland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 428 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnesen, P., Tjelmeland, H. Prior specification of neighbourhood and interaction structure in binary Markov random fields. Stat Comput 27, 737–756 (2017). https://doi.org/10.1007/s11222-016-9650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9650-5

Keywords

Navigation