Advertisement

Statistics and Computing

, Volume 27, Issue 2, pp 423–437 | Cite as

A hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs

  • Yongtao CaoEmail author
  • Byran J. Smucker
  • Timothy J. Robinson
Article

Abstract

This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by evolutionary multi-objective optimization algorithms with a coordinate exchange operator that is commonly used to construct optimal designs. Benchmarking results from both a two-dimensional and three-dimensional example demonstrate that the proposed hybrid algorithm can generate highly reliable Pareto fronts with less computational effort than existing procedures in the statistics literature. The proposed algorithm also utilizes a multi-start operator, which makes it readily parallelizable for high performance computing infrastructures.

Keywords

Multi-criteria optimal experimental design Pareto front Hybrid algorithm 

Notes

Acknowledgments

The authors would like to thank Drs. Christine Anderson-Cook, Lu Lu and You-jin Park for sharing their examples. We also wish to express gratitude to the reviewers and editor who reviewed this work and allowed us the opportunity to improve the paper. The first author is also grateful to Dr. Nancy Flournoy for her valuable suggestions and comments.

References

  1. Ajith, A., Crina, G., Hisao, I.: Hybrid Evolutionary Algorithms. Springer, Berlin (2007)zbMATHGoogle Scholar
  2. Borkowski, J.J.: Using a genetic algorithm to generate small exact response surface designs. J. Probab. Stat. Sci. 1(1), 65–88 (2003)Google Scholar
  3. Bursztyn, D., Steinberg, D.M.: Comparison of designs for computer experiments. J. Stat. Plan. Inference 136, 1103–1119 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cao, Y., Smucker, B.J., Robinson, T.J.: On using the hypervolume indicator to compare pareto fronts: applications to multi-criteria optimal experimental design. J. Stat. Plan. Inference 160, 60–74 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cook, D.R., Nachtsheim, C.J.: A comparison of algorithms for constructing exact d-optimal designs. Technometrics 22(3), 315–324 (1980)CrossRefzbMATHGoogle Scholar
  6. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 (1997)CrossRefGoogle Scholar
  7. Elhossini, A., Areibi, S., Dony, R.: Strength pareto particle swarm optimization and hybrid ea-pso for multi-objective optimization. Evo. Comput. 18, 127–156 (2010)CrossRefGoogle Scholar
  8. Farrell, R.H., Kiefer, J., Walbran, A.: Optimum multivariate designs. In LM LeCam and J. Neyman (eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. University of California Press 1, 113–138 (1967)Google Scholar
  9. Fedorov, V.V.: Theory of Optimal Experiments. Elsevier Science, Philadelphia (1972)Google Scholar
  10. Gert van, V., Tommi, T.: “hit and run” and “shake and bake” for sampling uniformly from convex shapes. R Package (2015)Google Scholar
  11. Jones, B., Nachtsheim, C.J.: Efficient designs with minimal aliasing. Technometrics 53, 62–71 (2011)MathSciNetCrossRefGoogle Scholar
  12. Kiefer, J., Wolfowitz, J.: Optimum designs in regression problems. Ann. Math. Stat. 30, 271–294 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Kiefer, J.: Optimum experimental designs. J. R. Stat. Soc. Ser. B (Methodological) 21, 272–319 (1959)MathSciNetzbMATHGoogle Scholar
  14. Kiefer, J.: Optimum designs in regression problems, ii. Ann. Math. Stat. 32, 298–325 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Limmun, W., Borkowski, J.J., Chomtee, B.: Using a genetic algorithm to generate d-optimal designs for mixture experiments. Qual. Reliab. Eng. Int. 29(7), 1099–1638 (2013)CrossRefGoogle Scholar
  16. Lu, L., Anderson-Cook, C.M., Robinson, T.J.: Optimization of designed experiments based on multiple criteria utilizing a pareto frontier. Technometrics 53(4), 353–365 (2011)MathSciNetCrossRefGoogle Scholar
  17. Mashwani, W.K.: Hybrid multi-objective evolutionary algorithms: A survey of the state-of-the-art. Int. J. Comput. Sci. Issues 8, 374–392 (2011)Google Scholar
  18. Meyer, R.K., Nachtsheim, C.J.: The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37(1), 60–69 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Park, Y.J.: Multi-optimal designs for second-order response surface models. Commun. Korean Stat. Soc. 16(1), 195–208 (2009)Google Scholar
  20. Sambo, F., Borrotti, M., Mylona, K.: A coordinate-exchange two-phase local search algorithm for the d- and i-optimal designs of split-plot experiments. Comput. Stat. Data Anal. 71, 1193–1207 (2014)Google Scholar
  21. Scrucca, L.: R package ‘ga’ (2014)Google Scholar
  22. Sexton, C.J., Anthony, D.K., Lewis, S.M., Please, C.P., Keane, A.J.: Design of experiment algorithms for assembled products. J. Qual. Technol. 38, 298–308 (2006)Google Scholar
  23. Sindhya, K., Miettinen, K., Deb, K.: A hybrid framework for evolutionary multi-objective optimization. Evol. Comput. IEEE Trans. 17, 495–511 (2013)CrossRefzbMATHGoogle Scholar
  24. Smith, N.A., Tromble, R.W.: Sampling uniformly from the unit simplex. Johns Hopkins University, Technical Report, pp. 1–6 (2004)Google Scholar
  25. Wang, L., Wu, H., Tang, F., Zheng, D.Z.: A hybrid quantum-inspired genetic algorithm for flow shop scheduling. In: Huang, D.S., Zhang, X.P., Huang, G.B. (eds.) Advances in Intelligent Computing, pp. 636–644. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Evol. Comput. IEEE Trans. 1, 67–82 (1997)CrossRefGoogle Scholar
  27. Yang, D., Jiao, L., Gong, M.: Adaptive multi-objective optimization based on nondominated solutions. Comput. Intell. 25, 84–108 (2009)MathSciNetCrossRefGoogle Scholar
  28. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1, 32–49 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yongtao Cao
    • 1
    Email author
  • Byran J. Smucker
    • 2
  • Timothy J. Robinson
    • 3
  1. 1.Department of MathematicsIndiana University of PennsylvaniaIndianaUSA
  2. 2.Department of StatisticsMiami UniversityOxfordUSA
  3. 3.Department of StatisticsUniversity of WyomingLaramieUSA

Personalised recommendations