Statistics and Computing

, Volume 25, Issue 2, pp 365–374 | Cite as

Retrospective Bayesian outlier detection in INGARCH series

  • Roland Fried
  • Inoncent Agueusop
  • Björn Bornkamp
  • Konstantinos Fokianos
  • Jana Fruth
  • Katja Ickstadt


INGARCH models for time series of counts arising, e.g., in epidemiology or finance assume the observations to be Poisson distributed conditionally on the past, with the conditional mean being an affine-linear function of the previous observations and the previous conditional means. We model outliers within such processes, assuming that we observe a contaminated process with additive Poisson distributed contamination, affecting each observation with a small probability. Our particular concern are additive outliers, which do not enter the dynamics of the process and can represent measurement artifacts and other singular events influencing a single observation. Retrospective analysis of such outliers is difficult within a non-Bayesian framework since the uncontaminated values entering the dynamics of the process at contaminated time points are unobserved. We propose a Bayesian approach to outlier modeling in INGARCH processes, approximating the posterior distribution of the model parameters by application of a componentwise Metropolis-Hastings algorithm. Analyzing real and simulated data sets, we find Bayesian outlier detection with non-informative priors to work well in practice when there are some outliers in the data.


Generalized linear models Time series of counts Additive outliers 


  1. Abanto-Valle, C.A., Bandyopadhyay, D., Lachos, V.H., Enriquez, I.: Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions. Comput. Stat. Data Anal. 54, 2883–2898 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  2. Atchadé, Y.F., Liu, J.: The Wang-Landau algorithm in general state spaces: applications and convergence analysis. Stat. Sin. 20, 209–233 (2010) zbMATHGoogle Scholar
  3. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econom. 31, 307–327 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  4. Charles, A., Darne, O.: Outliers and GARCH models in financial data. Econ. Lett. 86, 347–352 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  5. Chen, C., Liu, L.M.: Joint estimation of model parameters and outlier effects in time series. J. Am. Stat. Assoc. 88, 284–297 (1993) zbMATHGoogle Scholar
  6. Cox, D.R.: Statistical analysis of time series: some recent developments. Scand. J. Stat. 8, 93–115 (1981) zbMATHGoogle Scholar
  7. Davies, P.L., Gather, U.: The identification of multiple outliers (with discussion and reply). J. Am. Stat. Assoc. 88, 782–801 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  8. Doukhan, P., Fokianos, K., Tjostheim, D.: On weak dependence conditions for Poisson autoregressions. Stat. Probab. Lett. 82, 942–948 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  9. Ferland, R., Latour, A., Oraichi, D.: Integer-valued GARCH process. J. Time Ser. Anal. 27, 923–942 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  10. Fokianos, K.: Some recent progress in count time series. Statistics 45, 49–58 (2012) CrossRefMathSciNetGoogle Scholar
  11. Fokianos, K., Fried, R.: Interventions in INGARCH processes. J. Time Ser. Anal. 31, 210–225 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  12. Fokianos, K., Rahbek, A., Tjostheim, D.: Poisson autoregression. J. Am. Stat. Assoc. 104, 1430–1439 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  13. Fox, A.J.: Outliers in time series. J. R. Stat. Soc. B 34, 350–363 (1972) zbMATHGoogle Scholar
  14. Heinen, A.: Modelling time series count data: an autoregressive conditional Poisson model. MPRA Paper 8113, University Library of Munich, Germany (2003). Available at
  15. Justel, A., Peña, D., Tsay, R.S.: Detection of outlier patches in autoregressive time series. Stat. Sin. 11, 651–673 (2001) zbMATHGoogle Scholar
  16. Lunn, D., Spiegelhalter, D., Thomas, A., Best, N.: The BUGS project: evolution, critique, and future directions. Stat. Med. 28, 3049–3067 (2009) CrossRefMathSciNetGoogle Scholar
  17. Neal, R.M.: MCMC using Hamiltonian dynamics. In: Brooks, S., Gelman, A., Jones, G.L., Meng, X.-L. (eds.) Handbook of Markov Chain Monte Carlo, pp. 113–162. Chapman & Hall/CRC Press, New York (2010) Google Scholar
  18. Ntzoufras, I.: Bayesian Modeling Using WinBUGS. Wiley, New York (2009) CrossRefzbMATHGoogle Scholar
  19. O’Hagan, A., Murphy, T.B., Gormley, I.C.: Computational aspects of fitting mixture models via the expectation-maximization algorithm. Comput. Stat. Data Anal. 56, 3843–3864 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  20. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2009). ISBN 3-900051-07-0 Google Scholar
  21. Rigaill, G., Lebarbier, E., Robin, S.: Exact posterior distributions and model selection criteria for multiple change-point detection problems. Stat. Comput. 22, 917–929 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  22. Rydberg, T.H., Shephard, N.: A modelling framework for the prices and times of trades made on the New York stock exchange. In: Fitzgerald, W.J., Smith, R.L., Walden, A.T., Young, P.C. (eds.) Nonlinear and Nonstationary Signal Processing, pp. 217–246. Isaac Newton Institute and Cambridge University Press, Cambridge (2000) Google Scholar
  23. Silva, M.E., Frias, R., Pereira, I.: Detection of additive outliers in Poisson INteger-valued AutoRegressive time series (2012). Available at
  24. Streett, S.: Some observation driven models for time series of counts. PhD-thesis, Colorado State University, Department of Statistics (2000) Google Scholar
  25. Sturtz, S., Ligges, U., Gelman, A.: R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12, 1–16 (2005) Google Scholar
  26. Unnikrishnan, N.K.: Bayesian analysis for outliers in survey sampling. Comput. Stat. Data Anal. 54, 1962–1974 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  27. Wang, J.J., Chan, J.S.K., Choy, S.T.B.: Stochastic volatility models with leverage and heavy-tailed distributions: a Bayesian approach using scale mixtures. Comput. Stat. Data Anal. 55, 852–862 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  28. West, M., Harrison, P.J.: Bayesian Forecasting & Dynamic Models, 2nd edn. Springer, New York (1997) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roland Fried
    • 1
  • Inoncent Agueusop
    • 1
  • Björn Bornkamp
    • 2
  • Konstantinos Fokianos
    • 3
  • Jana Fruth
    • 1
  • Katja Ickstadt
    • 1
  1. 1.TU Dortmund UniversityDortmundGermany
  2. 2.NovartisBaselSwitzerland
  3. 3.University of CyprusNicosiaCyprus

Personalised recommendations