Statistics and Computing

, Volume 25, Issue 2, pp 243–260 | Cite as

On parallel implementation of sequential Monte Carlo methods: the island particle model

  • Christelle VergéEmail author
  • Cyrille Dubarry
  • Pierre Del Moral
  • Eric Moulines


The approximation of the Feynman-Kac semigroups by systems of interacting particles is a very active research field, with applications in many different areas. In this paper, we study the parallelization of such approximations. The total population of particles is divided into sub-populations, referred to as islands. The particles within each island follow the usual selection/mutation dynamics. We show that the evolution of each island is also driven by a Feynman-Kac semigroup, whose transition and potential can be explicitly related to ones of the original problem. Therefore, the same genetic type approximation of the Feynman-Kac semi-group may be used at the island level; each island might undergo selection/mutation algorithm. We investigate the impact of the population size within each island and the number of islands, and study different type of interactions. We find conditions under which introducing interactions between islands is beneficial. The theoretical results are supported by some Monte Carlo experiments.


Particle approximation of Feynman-Kac flow Island models Parallel implementation 



This work is supported by the Agence Nationale de la Recherche through the 2009-2012 project Big MC. The work of Christelle Vergé is financially supported by CNES (Centre National d’Etudes Spatiales) and Onera, The French Aerospace Lab.


  1. Arnaud, E., Le Gland, F.: SMC with Adaptive Resampling: Large Sample Asymptotics, pp. 481–484 (2009) Google Scholar
  2. Cappé, O., Moulines, E.: On the use of particle filtering for maximum likelihood parameter estimation. In: European Signal Processing Conference (EUSIPCO), Antalya, Turkey (2005) Google Scholar
  3. Casarin, R., Grassi, S., Ravazzolo, F., Van Dijk, H.K.: Parallel sequential Monte Carlo for efficient density combination: the deco Matlab toolboox. Tinbergen Institute Discussion Paper, 055/III (2013) Google Scholar
  4. Chopin, N.: A sequential particle filter method for static models. Biometrika 89, 539–552 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  5. Chopin, N., Jacob, P., Papaspiliopoulos, O.: SMC2: a sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates. J. R. Stat. Soc. B. 75(3), 397–426 (2013). doi: 10.1111/j.1467-9868.2012.01046.x CrossRefMathSciNetGoogle Scholar
  6. Del Moral, P.: Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Springer, Berlin (2004) CrossRefzbMATHGoogle Scholar
  7. Del Moral, P., Doucet, A., Jasra, A.: On adaptive resampling strategies for sequential Monte Carlo methods. Bernoulli 18(1), 252–278 (2012a) CrossRefzbMATHMathSciNetGoogle Scholar
  8. Del Moral, P., Hu, P., Wu, L.: On the concentration properties of interacting particle processes. Found. Trends Mach. Learn. 3(3–4), 225–289 (2012b) Google Scholar
  9. Douc, R., Moulines, E.: Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Ann. Stat. 36(5), 2344–2376 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  10. Doucet, A., Freitas, N.D. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001) zbMATHGoogle Scholar
  11. Durham, G., Geweke, J.: Massively parallel sequential Monte Carlo for Bayesian inference. Manuscript, URL (2011)
  12. Jasra, A., Doucet, A., Stephens, D.A., Holmes, C.C.: Interacting sequential Monte Carlo samplers for trans-dimensional simulation. Comput. Stat. Data Anal. 52, 1765–1791 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  13. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001) zbMATHGoogle Scholar
  14. Liu, J., Chen, R.: Blind deconvolution via sequential imputations. J. Am. Stat. Assoc. 90(420), 567–576 (1995) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christelle Vergé
    • 4
    • 5
    • 6
    Email author
  • Cyrille Dubarry
    • 2
  • Pierre Del Moral
    • 1
  • Eric Moulines
    • 3
  1. 1.Centre INRIA Bordeaux Sud OuestTalence CedexFrance
  2. 2.SAMOVAR, CNRS UMR 5157Institut Télécom/Télécom SudParisEvryFrance
  3. 3.LTCI, CNRS UMR 8151Institut Télécom/Télécom ParisTechParis Cedex 13France
  4. 4.ONERAThe French Aerospace LabPalaiseauFrance
  5. 5.CNESToulouse Cedex 9France
  6. 6.CMAPEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations