Statistics and Computing

, Volume 24, Issue 3, pp 461–479 | Cite as

Linear quantile mixed models

Article

Abstract

Dependent data arise in many studies. Frequently adopted sampling designs, such as cluster, multilevel, spatial, and repeated measures, may induce this dependence, which the analysis of the data needs to take into due account. In a previous publication (Geraci and Bottai in Biostatistics 8:140–154, 2007), we proposed a conditional quantile regression model for continuous responses where subject-specific random intercepts were included to account for within-subject dependence in the context of longitudinal data analysis. The approach hinged upon the link existing between the minimization of weighted absolute deviations, typically used in quantile regression, and the maximization of a Laplace likelihood. Here, we consider an extension of those models to more complex dependence structures in the data, which are modeled by including multiple random effects in the linear conditional quantile functions. We also discuss estimation strategies to reduce the computational burden and inefficiency associated with the Monte Carlo EM algorithm we have proposed previously. In particular, the estimation of the fixed regression coefficients and of the random effects’ covariance matrix is based on a combination of Gaussian quadrature approximations and non-smooth optimization algorithms. Finally, a simulation study and a number of applications of our models are presented.

Keywords

Best linear predictor Clarke’s derivative Hierarchical models Gaussian quadrature 

References

  1. Alhamzawi, R., Yu, K., Pan, J.: Prior elicitation in Bayesian quantile regression for longitudinal data. J. Biometr. Biostat. 2, 1–7 (2011) CrossRefGoogle Scholar
  2. Azzalini, A., Capitanio, A.: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc., Ser. B, Stat. Methodol. 65, 367–389 (2003) MATHCrossRefMathSciNetGoogle Scholar
  3. Barrodale, I., Roberts, F.D.K.: An efficient algorithm for discrete l 1 linear approximation with linear constraints. SIAM J. Numer. Anal. 15, 603–611 (1978) MATHCrossRefMathSciNetGoogle Scholar
  4. Bassett, G., Koenker, R.: Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc. 73, 618–622 (1978) MATHCrossRefMathSciNetGoogle Scholar
  5. Boscovich, R.J.: De Litteraria Expeditione per Pontificiam Ditionem, et Synopsis Amplioris Operis, Ac Habentur Plura Ejus Ex Exemplaria Etiam Sensorum Impressa. Bononiesi Scientiarum et Artum Instituto Atque Academia Commentarii, vol. IV (1757) Google Scholar
  6. Bose, A., Chatterjee, S.: Generalized bootstrap for estimators of minimizers of convex functions. J. Stat. Plan. Inference 117, 225–239 (2003) MATHCrossRefMathSciNetGoogle Scholar
  7. Bottai, M., Orsini, N.: A command for Laplace regression. Stata J. (2012, in press) Google Scholar
  8. Bottai, M., Zhang, J.: Laplace regression with censored data. Biom. J. 52, 487–503 (2010) MATHCrossRefMathSciNetGoogle Scholar
  9. Buchinsky, M.: Estimating the asymptotic covariance matrix for quantile regression models. A Monte Carlo study. J. Econom. 68, 303–338 (1995) MATHCrossRefMathSciNetGoogle Scholar
  10. Canay, I.A.: A simple approach to quantile regression for panel data. Econom. J. 14, 368–386 (2011) MATHCrossRefMathSciNetGoogle Scholar
  11. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990) MATHCrossRefGoogle Scholar
  12. Demidenko, E.: Mixed Models. Theory and Applications. Wiley, Hoboken (2004) MATHCrossRefGoogle Scholar
  13. DerSimonian, R., Laird, N.: Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986) CrossRefGoogle Scholar
  14. Doksum, K.: Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann. Stat. 2, 267–277 (1974) MATHCrossRefMathSciNetGoogle Scholar
  15. Eltoft, T., Kim, T., Lee, T.-W.: On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13, 300–303 (2006) CrossRefGoogle Scholar
  16. Farcomeni, A.: Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat. Comput. 22, 141–152 (2012) CrossRefMathSciNetGoogle Scholar
  17. Feng, X., He, X., Hu, J.: Wild bootstrap for quantile regression. Biometrika 98, 995–999 (2011) MATHCrossRefMathSciNetGoogle Scholar
  18. Fielding, A., Yang, M., Goldstein, H.: Multilevel ordinal models for examination grades. Stat. Model. 3, 127–153 (2003) MATHCrossRefMathSciNetGoogle Scholar
  19. Fu, L., Wang, Y.-G.: Quantile regression for longitudinal data with a working correlation model. Comput. Stat. Data Anal. 56, 2526–2538 (2012) MATHCrossRefMathSciNetGoogle Scholar
  20. Galvao, A.F.: Quantile regression for dynamic panel data with fixed effects. J. Econom. 164, 142–157 (2011) CrossRefMathSciNetGoogle Scholar
  21. Galvao, A.F., Montes-Rojas, G.V.: Penalized quantile regression for dynamic panel data. J. Stat. Plan. Inference 140, 3476–3497 (2010) MATHCrossRefMathSciNetGoogle Scholar
  22. Genz, A., Keister, B.D.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71, 299–309 (1996) MATHCrossRefMathSciNetGoogle Scholar
  23. Geraci, M.: lqmm: Linear quantile mixed models. R package version 1.02 (2012) Google Scholar
  24. Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154 (2007) MATHCrossRefGoogle Scholar
  25. Geraci, M., Salvati, N.: The geographical distribution of the consumption expenditure in Ecuador: estimation and mapping of the regression quantiles. Stat. Appl. 19, 167–183 (2007) Google Scholar
  26. He, X.: Quantile curves without crossing. Am. Stat. 51, 186–192 (1997) Google Scholar
  27. He, X., Hu, F.: Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783–795 (2002) MATHCrossRefMathSciNetGoogle Scholar
  28. He, X.M., Ng, P., Portnoy, S.: Bivariate quantile smoothing splines. J. R. Stat. Soc., Ser. B, Stat. Methodol. 60, 537–550 (1998) MATHCrossRefMathSciNetGoogle Scholar
  29. He, X.M., Portnoy, S.: Some asymptotic results on bivariate quantile splines. J. Stat. Plan. Inference 91, 341–349 (2000) MATHCrossRefMathSciNetGoogle Scholar
  30. Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econom. 144, 62–80 (2008) CrossRefMathSciNetGoogle Scholar
  31. Higham, N.: Computing the nearest correlation matrix—a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002) MATHCrossRefMathSciNetGoogle Scholar
  32. Hinkley, D.V., Revankar, N.S.: Estimation of the Pareto law from underreported data: a further analysis. J. Econom. 5, 1–11 (1977) MATHCrossRefMathSciNetGoogle Scholar
  33. Karlsson, A.: Nonlinear quantile regression estimation of longitudinal data. Commun. Stat., Simul. Comput. 37, 114–131 (2008) MATHCrossRefMathSciNetGoogle Scholar
  34. Kim, M.-O., Yang, Y.: Semiparametric approach to a random effects quantile regression model. J. Am. Stat. Assoc. 106, 1405–1417 (2011) MATHCrossRefMathSciNetGoogle Scholar
  35. Kocherginsky, M., He, X., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14, 41–55 (2005) CrossRefMathSciNetGoogle Scholar
  36. Koenker, R.: Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74–89 (2004) MATHCrossRefMathSciNetGoogle Scholar
  37. Koenker, R.: Quantile Regression. Cambridge University Press, New York (2005) MATHCrossRefGoogle Scholar
  38. Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978) MATHCrossRefMathSciNetGoogle Scholar
  39. Koenker, R., Machado, J.A.F.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999) MATHCrossRefMathSciNetGoogle Scholar
  40. Koenker, R., Mizera, I.: Penalized triograms: total variation regularization for bivariate smoothing. J. R. Stat. Soc., Ser. B, Stat. Methodol. 66, 145–163 (2004) MATHCrossRefMathSciNetGoogle Scholar
  41. Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81, 673–680 (1994) MATHCrossRefMathSciNetGoogle Scholar
  42. Koenker, R., Xiao, Z.J.: Inference on the quantile regression process. Econometrica 70, 1583–1612 (2002) MATHCrossRefMathSciNetGoogle Scholar
  43. Kotz, S., Kozubowski, T.J., Podgórski, K.: An asymmetric multivariate Laplace distribution. Tech. Rep. 367, Department of Statistics and Applied Probability, University of California at Santa Barbara (2000) Google Scholar
  44. Kozubowski, T.J., Nadarajah, S.: Multitude of Laplace distributions. Stat. Pap. 51, 127–148 (2010) MATHCrossRefMathSciNetGoogle Scholar
  45. Lamarche, C.: Robust penalized quantile regression estimation for panel data. J. Econom. 157, 396–498 (2010) CrossRefMathSciNetGoogle Scholar
  46. Lee, D., Neocleous, T.: Bayesian quantile regression for count data with application to environmental epidemiology. J. R. Stat. Soc., Ser. C, Appl. Stat. 59, 905–920 (2010) CrossRefMathSciNetGoogle Scholar
  47. Lee, Y., Nelder, J.A.: Conditional and marginal models: another view. Stat. Sci. 19, 219–228 (2004) MATHCrossRefMathSciNetGoogle Scholar
  48. Lehmann, E.L.: Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco (1975) MATHGoogle Scholar
  49. Li, Q., Xi, R., Lin, N.: Bayesian regularized quantile regression. Bayesian Anal. 5, 533–556 (2010) CrossRefMathSciNetGoogle Scholar
  50. Lipsitz, S.R., Fitzmaurice, G.M., Molenberghs, G., Zhao, L.P.: Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J. R. Stat. Soc., Ser. C, Appl. Stat. 46, 463–476 (1997) MATHCrossRefGoogle Scholar
  51. Liu, Y., Bottai, M.: Mixed-effects models for conditional quantiles with longitudinal data. Int. J. Biostat. 5, 1–22 (2009) MATHMathSciNetGoogle Scholar
  52. Lum, K., Gelfand, A.: Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Anal. 7, 235–258 (2012) CrossRefMathSciNetGoogle Scholar
  53. Machado, J.A.F., Santos Silva, J.M.C.: Quantiles for counts. J. Am. Stat. Assoc. 100, 1226–1237 (2005) MATHCrossRefMathSciNetGoogle Scholar
  54. Oberhofer, W., Haupt, H.: The asymptotic distribution of the unconditional quantile estimator under dependence. Stat. Probab. Lett. 73, 243–250 (2005) MATHCrossRefMathSciNetGoogle Scholar
  55. Parzen, M., Wei, L., Ying, Z.: A resampling method based on pivotal estimating functions. Biometrika 81, 341–350 (1994) MATHCrossRefMathSciNetGoogle Scholar
  56. Pinheiro, J., Bates, D.: Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Stat. 4, 12–35 (1995) Google Scholar
  57. Pinheiro, J.C., Bates, D.M.: Unconstrained parametrizations for variance-covariance matrices. Stat. Comput. 6, 289–296 (1996) CrossRefGoogle Scholar
  58. Pinheiro, J.C., Chao, E.C.: Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J. Comput. Graph. Stat. 15, 58–81 (2006) CrossRefMathSciNetGoogle Scholar
  59. Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86, 677–690 (1999) MATHCrossRefMathSciNetGoogle Scholar
  60. Prékopa, A.: Logarithmic concave measures and functions. Acta Sci. Math. 34, 334–343 (1973) Google Scholar
  61. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2012). ISBN 3-900051-07-0 Google Scholar
  62. Reed, W.: The normal-Laplace distribution and its relatives. In: Balakrishnan, N., Castillo, E., Sarabia Alegria, J.-M. (eds.) Advances in Distribution Theory, Order Statistics, and Inference, pp. 61–74. Birkhäuser Boston, New York (2006) CrossRefGoogle Scholar
  63. Reich, B.J., Bondell, H.D., Wang, H.J.: Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11, 337–352 (2010a) CrossRefGoogle Scholar
  64. Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. (2010b) Google Scholar
  65. Rigby, R., Stasinopoulos, D.: Generalized additive models for location, scale and shape. J. R. Stat. Soc., Ser. C, Appl. Stat. 54, 507–554 (2005) MATHCrossRefMathSciNetGoogle Scholar
  66. Robinson, G.: That BLUP is a good thing: the estimation of random effects. Stat. Sci. 6, 15–32 (1991) MATHCrossRefGoogle Scholar
  67. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  68. Rogan, W.J., Dietrich, K.N., Ware, J.H., Dockery, D.W., Salganik, M., Radcliffe, J., Jones, R.L., Ragan, N.B., Chisolm, J.J., Rhoads, G.G.: The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N. Engl. J. Med. 344, 1421–1426 (2001) CrossRefGoogle Scholar
  69. Ruppert, D., Wand, M., Carroll, R.: Semiparametric Regression. Cambridge University Press, New York (2003) MATHCrossRefGoogle Scholar
  70. Sarkar, D.: Lattice: Multivariate Data Visualization with R. Springer, New York (2008) CrossRefGoogle Scholar
  71. Treatment of Lead-Exposed Children (TLC) Trial Group: Safety and efficacy of succimer in toddlers with blood lead levels of 20–44 μg/dL. Pediatr. Res. 48, 593–599 (2000) CrossRefGoogle Scholar
  72. Wagner, H.M.: Linear programming techniques for regression analysis. J. Am. Stat. Assoc. 54, 206–212 (1959) MATHCrossRefGoogle Scholar
  73. Wang, J.: Bayesian quantile regression for parametric nonlinear mixed effects models. Stat. Methods Appl. (2012) Google Scholar
  74. Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. Statistician 52, 331–350 (2003) MathSciNetGoogle Scholar
  75. Yu, K., Zhang, J.: A three-parameter asymmetric Laplace distribution and its extension. Commun. Stat., Theory Methods 34, 1867–1879 (2005) MATHCrossRefGoogle Scholar
  76. Yu, K.M., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001) MATHCrossRefMathSciNetGoogle Scholar
  77. Yuan, Y., Yin, G.: Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66, 105–114 (2010) MATHCrossRefMathSciNetGoogle Scholar
  78. Zhao, Q.S.: Restricted regression quantiles. J. Multivar. Anal. 72, 78–99 (2000) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre for Paediatric Epidemiology and Biostatistics, MRC Centre of Epidemiology for Child Health, Institute of Child HealthUniversity College LondonLondonUK
  2. 2.Unit of Biostatistics, Institute of Environmental MedicineKarolinska InstitutetStockholmSweden

Personalised recommendations