Statistics and Computing

, Volume 24, Issue 3, pp 417–427 | Cite as

Generalized linear mixed joint model for longitudinal and survival outcomes



Longitudinal studies often entail categorical outcomes as primary responses. When dropout occurs, non-ignorability is frequently accounted for through shared parameter models (SPMs). In this context, several extensions from Gaussian to non-Gaussian longitudinal processes have been proposed. In this paper, we formulate an approach for non-Gaussian longitudinal outcomes in the framework of joint models. As an extension of SPMs, based on shared latent effects, we assume that the history of the response up to current time may have an influence on the risk of dropout. This history is represented by the current, expected, value of the response. Since the time a subject spends in the study is continuous, we parametrize the dropout process through a proportional hazard model. The resulting model is referred to as Generalized Linear Mixed Joint Model (GLMJM). To estimate model parameters, we adopt a maximum likelihood approach via the EM algorithm. In this context, the maximization of the observed data log-likelihood requires numerical integration over the random effect posterior distribution, which is usually not straightforward; under the assumption of Gaussian random effects, we compare Gauss-Hermite and Pseudo-Adaptive Gaussian quadrature rules. We investigate in a simulation study the behaviour of parameter estimates in the case of Poisson and Binomial longitudinal responses, and apply the GLMJM to a benchmark dataset.


Discrete longitudinal responses Dropout Survival analysis Joint models Pseudo-adaptive Gaussian quadrature 


  1. Albert, P.S., Follmann, D.A.: Modeling repeated count data subject to informative dropout. Biometrics 56, 667–677 (2000) CrossRefMATHGoogle Scholar
  2. Albert, P.S., Follmann, D.A., Wang, S.A., Suh, E.B.: A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58, 631–642 (2002) CrossRefMATHMathSciNetGoogle Scholar
  3. Andersen, P., Gill, R.: Cox’s regression model for counting processes: a large sample study. Ann. Stat. 10, 1100–1120 (1982) CrossRefMATHMathSciNetGoogle Scholar
  4. Carlin, B.P., Louis, T.A.: Bayesian Methods for Data Analysis. Chapman & Hall/CRC Press, Boca Raton (2009) Google Scholar
  5. Cox, D.R.: Regression models and life tables (with discussion). J. R. Stat. Soc., Ser. B, Stat. Methodol. 34, 187–220 (1972) MATHGoogle Scholar
  6. Cox, D.R., Hinkley, D.: Theoretical Statistics. Chapman & Hall, London (1974) CrossRefMATHGoogle Scholar
  7. Geyer, J.C., Thompson, E.A.: Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stat. Soc., Ser. B, Stat. Methodol. 54, 657–699 (1992) MathSciNetGoogle Scholar
  8. Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L., Abrams, D.: Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection. J. Acquir. Immune Defic. Syndr. Human Retrovirol. 11, 161–169 (1996) CrossRefGoogle Scholar
  9. Hsieh, F., Tseng, Y.-K., Wang, J.-K.: Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics 62, 1037–1043 (2006) CrossRefMATHMathSciNetGoogle Scholar
  10. Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G., Kenward, M.G.: The nature of sensitivity in missing not at random models. Comput. Stat. Data Anal. 50, 830–854 (2006) CrossRefMATHMathSciNetGoogle Scholar
  11. Kronrod, A.S.: On the theory of quadratic pencils of selfadjoint operators. Dokl. Akad. Nauk SSSR 154, 283–286 (1964) MathSciNetGoogle Scholar
  12. Louis, T.A.: Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. B 44, 226–233 (1982) MATHMathSciNetGoogle Scholar
  13. Molenberghs, G., Verbeke, G.: Models for Discrete Longitudinal Data. Springer, New York (2005) MATHGoogle Scholar
  14. Molenberghs, G., Verbeke, G., Demetrio, C.G.B., Vieira, M.C.: A family of generalized linear models for repeated measures with normal and conjugate random effects. Stat. Sci. 25, 325–347 (2011) CrossRefMathSciNetGoogle Scholar
  15. Oakes, D.: Direct calculation of the information matrix via the EM algorithm. J. R. Stat. Soc., Ser. B, Stat. Methodol. 61, 479–482 (1999) CrossRefMATHMathSciNetGoogle Scholar
  16. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007) Google Scholar
  17. Rizopoulos, D.: Jm: an R package for the joint modelling of longitudinal and time-to-event data. J. Stat. Softw. 35, 9 (2010) Google Scholar
  18. Rizopoulos, D.: Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. Comput. Stat. Data Anal. 56, 491–501 (2012) CrossRefMATHMathSciNetGoogle Scholar
  19. Rizopoulos, D., Ghosh, P.: A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat. Med. 30, 1366–1380 (2011) CrossRefMathSciNetGoogle Scholar
  20. Rizopoulos, D., Verbeke, G., Lesaffre, E.: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. J. R. Stat. Soc., Ser. B, Stat. Methodol. 71, 637–654 (2009) CrossRefMATHMathSciNetGoogle Scholar
  21. Rizopoulos, D., Verbeke, G., Molenberghs, G.: Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics 66, 20–29 (2010) CrossRefMATHMathSciNetGoogle Scholar
  22. Troxel, A.B., Ma, G., Heitjan, F.: Shared parameter models for the joint analysis of longitudinal data and event times. Stat. Sin. 14, 1221–1237 (2004) MATHMathSciNetGoogle Scholar
  23. Tsiatis, A.A., Davidian, M.: Joint modeling of longitudinal and time-to-event data: an overview. Stat. Sin. 14, 809–834 (2004) MATHMathSciNetGoogle Scholar
  24. Viviani, S., Rizopoulos, D., Alfó, M.: Local Sensitivity to non-ignorability in Joint Models. Stat. Model. (2012, major revision) Google Scholar
  25. Wu, M., Carrol, R.: Estimation and comparison of changes in presence of informative right censoring by modelling the censoring process. Biometrics 45, 939–955 (1988) CrossRefGoogle Scholar
  26. Wulfsohn, M., Tsiatis, A.: A joint model for survival and longitudinal data measured with error. Biometrics 53, 330–339 (1997) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sara Viviani
    • 1
  • Marco Alfó
    • 1
  • Dimitris Rizopoulos
    • 2
  1. 1.Department of StatisticsSapienza University of RomeRomeItaly
  2. 2.Department of BiostatisticsErasmus University Medical CenterRotterdamThe Netherlands

Personalised recommendations