Bayesian tests on components of the compound symmetry covariance matrix

Abstract

Complex dependency structures are often conditionally modeled, where random effects parameters are used to specify the natural heterogeneity in the population. When interest is focused on the dependency structure, inferences can be made from a complex covariance matrix using a marginal modeling approach. In this marginal modeling framework, testing covariance parameters is not a boundary problem. Bayesian tests on covariance parameter(s) of the compound symmetry structure are proposed assuming multivariate normally distributed observations. Innovative proper prior distributions are introduced for the covariance components such that the positive definiteness of the (compound symmetry) covariance matrix is ensured. Furthermore, it is shown that the proposed priors on the covariance parameters lead to a balanced Bayes factor, in case of testing an inequality constrained hypothesis. As an illustration, the proposed Bayes factor is used for testing (non-)invariant intra-class correlations across different group types (public and Catholic schools), using the 1982 High School and Beyond survey data.

References

  1. Andrieu, C., Thomas, J.: A tutorial on adaptice MCMC. Stat. Comput. 18, 343–373 (2008)

    MathSciNet  Article  Google Scholar 

  2. Bartlett, M.: A comment on Lindley’s statistical paradox. Biometrika 44, 533–534 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Berger, J.O., Bernardo, J.M.: On the development of the reference prior method. In: Bernardo, J.M., Berger, J.O., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 4, pp. 35–600. London: Oxford Univ. Press (1992)

    Google Scholar 

  4. Berger, J.O., Mortera, J.: Default Bayes Factors for nonnested hypothesis testing. J. Am. Stat. Assoc. 94, 542–554 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  5. Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for model selection and prediction. J. Am. Stat. Assoc. 91, 109–122 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  6. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading (1973)

    Google Scholar 

  7. Browne, W.J.: MCMC algorithms for constrained variance matrices. Comput. Stat. Data Anal. 50, 1655–1677 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  8. Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49, 327–335 (1995)

    Google Scholar 

  9. Chib, S., Greenberg, E.: Analysis of multivariate probit models. Biometrika 85, 347–361 (1998)

    Article  MATH  Google Scholar 

  10. Chib, S., Jeliazkov, I.: Marginal likelihoods from the Metropolis-Hastings Output. J. Am. Stat. Assoc. 96, 270–281 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  11. Chung, Y., Dey, D.K.: Bayesian approach to estimation of intraclass correlation using reference prior. Commun. Stat. 26, 2241–2255 (1998)

    MathSciNet  Google Scholar 

  12. Dickey, J.: The weighted likelihood ratio linear hypotheses on normal location parameters. Ann. Stat. 42, 204–223 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  13. Fox, J.-P.: Bayesian Item Response Modeling: Theory and Applications. Springer, New York (2010)

    Google Scholar 

  14. Gelfand, A.E., Hills, S.E., Racine-Poon, A., Smith, A.F.M.: Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. Stat. Assoc. 85, 972–985 (1990)

    Article  Google Scholar 

  15. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York (2007)

    Google Scholar 

  16. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  17. Jeffreys, H.: Theory of Probability, 3rd edn. Oxford University Press, New York (1961)

    Google Scholar 

  18. Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995)

    Article  MATH  Google Scholar 

  19. Kato, B., Hoijtink, H.: Testing homogeneity in a random intercept model using asymptotic posterior predictive and plug-in p-values. Stat. Neerl. 58, 179–196 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  20. Klugkist, Hoijtink: The Bayes factor for inequality and about equality constrained models. Comput. Stat. Data Anal. 51, 6367–6379 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  21. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  22. Mulder, J., Hoijtink, H., Klugkist, I.: Equality and inequality constrained multivariate linear models: objective model selection using constrained posterior priors. J. Stat. Plan. Inference 140, 887–906 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  23. O’Hagen, A.: Fractional Bayes factors for model comparison (with discussion). J. R. Stat. Soc. Ser. B 57, 99–138 (1995)

    Google Scholar 

  24. Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edn. Sage, Thousand Oaks (2002)

    Google Scholar 

  25. Roberts, G.O., Sahu, S.K.: Updating schemes correlation structure, blocking and parameterization for the Gibbs sampler. J. R. Stat. Soc. B 59, 291–317 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  26. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York (1992)

    Google Scholar 

  27. Silvapulle, M.J., Sen, P.K.: Constrained Statistical Inference: Inequality, order, and Shape Restrictions. Wiley, Hoboken (2005)

    Google Scholar 

  28. Snijders, T.A.B., Bosker, R.J.: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage, London (1999)

    Google Scholar 

  29. Szatkowski, A.: On the dynamic spaces and on the equations of motion of non-linear. Int. J. Circuit Theory Appl. 10, 99–122 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  30. Verbeke, G., Spiessens, B., Lesaffre, E.: Conditional linear mixed models. Am. Stat. 55, 24–34 (2001)

    MathSciNet  Article  Google Scholar 

  31. Votaw, D.F.: Testing compound symmetry in a normal multivariate distribution. Ann. Math. Stat. 19, 447–473 (1948)

    MathSciNet  Article  MATH  Google Scholar 

  32. Wetzels, R., Grasman, R.P.P.P., Wagenmakers, E.-J.: An encompassing prior generalization of the Savage-Dickey density ratio. Comput. Stat. Data Anal. 54, 2094–2102 (2010)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joris Mulder.

Additional information

This research was supported by grant NWO-VICI-453-05-002 of the Netherlands Organization for Scientific Research.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Mulder, J., Fox, J. Bayesian tests on components of the compound symmetry covariance matrix. Stat Comput 23, 109–122 (2013). https://doi.org/10.1007/s11222-011-9295-3

Download citation

Keywords

  • Bayes factor
  • Covariance matrices
  • Gibbs Sampler
  • Intra-class correlation
  • Compound symmetry
  • Savage-Dickey density ratio