Statistics and Computing

, Volume 23, Issue 1, pp 109–122 | Cite as

Bayesian tests on components of the compound symmetry covariance matrix

Open Access
Article

Abstract

Complex dependency structures are often conditionally modeled, where random effects parameters are used to specify the natural heterogeneity in the population. When interest is focused on the dependency structure, inferences can be made from a complex covariance matrix using a marginal modeling approach. In this marginal modeling framework, testing covariance parameters is not a boundary problem. Bayesian tests on covariance parameter(s) of the compound symmetry structure are proposed assuming multivariate normally distributed observations. Innovative proper prior distributions are introduced for the covariance components such that the positive definiteness of the (compound symmetry) covariance matrix is ensured. Furthermore, it is shown that the proposed priors on the covariance parameters lead to a balanced Bayes factor, in case of testing an inequality constrained hypothesis. As an illustration, the proposed Bayes factor is used for testing (non-)invariant intra-class correlations across different group types (public and Catholic schools), using the 1982 High School and Beyond survey data.

Keywords

Bayes factor Covariance matrices Gibbs Sampler Intra-class correlation Compound symmetry Savage-Dickey density ratio 

References

  1. Andrieu, C., Thomas, J.: A tutorial on adaptice MCMC. Stat. Comput. 18, 343–373 (2008) MathSciNetCrossRefGoogle Scholar
  2. Bartlett, M.: A comment on Lindley’s statistical paradox. Biometrika 44, 533–534 (1957) MathSciNetMATHGoogle Scholar
  3. Berger, J.O., Bernardo, J.M.: On the development of the reference prior method. In: Bernardo, J.M., Berger, J.O., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 4, pp. 35–600. London: Oxford Univ. Press (1992) Google Scholar
  4. Berger, J.O., Mortera, J.: Default Bayes Factors for nonnested hypothesis testing. J. Am. Stat. Assoc. 94, 542–554 (1999) MathSciNetCrossRefMATHGoogle Scholar
  5. Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for model selection and prediction. J. Am. Stat. Assoc. 91, 109–122 (1996) MathSciNetCrossRefMATHGoogle Scholar
  6. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading (1973) MATHGoogle Scholar
  7. Browne, W.J.: MCMC algorithms for constrained variance matrices. Comput. Stat. Data Anal. 50, 1655–1677 (2006) MathSciNetCrossRefMATHGoogle Scholar
  8. Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49, 327–335 (1995) Google Scholar
  9. Chib, S., Greenberg, E.: Analysis of multivariate probit models. Biometrika 85, 347–361 (1998) CrossRefMATHGoogle Scholar
  10. Chib, S., Jeliazkov, I.: Marginal likelihoods from the Metropolis-Hastings Output. J. Am. Stat. Assoc. 96, 270–281 (2001) MathSciNetCrossRefMATHGoogle Scholar
  11. Chung, Y., Dey, D.K.: Bayesian approach to estimation of intraclass correlation using reference prior. Commun. Stat. 26, 2241–2255 (1998) MathSciNetGoogle Scholar
  12. Dickey, J.: The weighted likelihood ratio linear hypotheses on normal location parameters. Ann. Stat. 42, 204–223 (1971) MathSciNetCrossRefMATHGoogle Scholar
  13. Fox, J.-P.: Bayesian Item Response Modeling: Theory and Applications. Springer, New York (2010) CrossRefMATHGoogle Scholar
  14. Gelfand, A.E., Hills, S.E., Racine-Poon, A., Smith, A.F.M.: Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. Stat. Assoc. 85, 972–985 (1990) CrossRefGoogle Scholar
  15. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York (2007) Google Scholar
  16. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970) CrossRefMATHGoogle Scholar
  17. Jeffreys, H.: Theory of Probability, 3rd edn. Oxford University Press, New York (1961) MATHGoogle Scholar
  18. Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995) CrossRefMATHGoogle Scholar
  19. Kato, B., Hoijtink, H.: Testing homogeneity in a random intercept model using asymptotic posterior predictive and plug-in p-values. Stat. Neerl. 58, 179–196 (2004) MathSciNetCrossRefMATHGoogle Scholar
  20. Klugkist, Hoijtink: The Bayes factor for inequality and about equality constrained models. Comput. Stat. Data Anal. 51, 6367–6379 (2007) MathSciNetCrossRefMATHGoogle Scholar
  21. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953) CrossRefGoogle Scholar
  22. Mulder, J., Hoijtink, H., Klugkist, I.: Equality and inequality constrained multivariate linear models: objective model selection using constrained posterior priors. J. Stat. Plan. Inference 140, 887–906 (2010) MathSciNetCrossRefMATHGoogle Scholar
  23. O’Hagen, A.: Fractional Bayes factors for model comparison (with discussion). J. R. Stat. Soc. Ser. B 57, 99–138 (1995) Google Scholar
  24. Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edn. Sage, Thousand Oaks (2002) Google Scholar
  25. Roberts, G.O., Sahu, S.K.: Updating schemes correlation structure, blocking and parameterization for the Gibbs sampler. J. R. Stat. Soc. B 59, 291–317 (1997) MathSciNetCrossRefMATHGoogle Scholar
  26. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York (1992) CrossRefMATHGoogle Scholar
  27. Silvapulle, M.J., Sen, P.K.: Constrained Statistical Inference: Inequality, order, and Shape Restrictions. Wiley, Hoboken (2005) MATHGoogle Scholar
  28. Snijders, T.A.B., Bosker, R.J.: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage, London (1999) MATHGoogle Scholar
  29. Szatkowski, A.: On the dynamic spaces and on the equations of motion of non-linear. Int. J. Circuit Theory Appl. 10, 99–122 (1982) MathSciNetCrossRefMATHGoogle Scholar
  30. Verbeke, G., Spiessens, B., Lesaffre, E.: Conditional linear mixed models. Am. Stat. 55, 24–34 (2001) MathSciNetCrossRefGoogle Scholar
  31. Votaw, D.F.: Testing compound symmetry in a normal multivariate distribution. Ann. Math. Stat. 19, 447–473 (1948) MathSciNetCrossRefMATHGoogle Scholar
  32. Wetzels, R., Grasman, R.P.P.P., Wagenmakers, E.-J.: An encompassing prior generalization of the Savage-Dickey density ratio. Comput. Stat. Data Anal. 54, 2094–2102 (2010) MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of Methodology and StatisticsTilburg UniversityTilburgThe Netherlands
  2. 2.Department of Research Methodology, Measurement and Data AnalysisUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations