Statistics and Computing

, Volume 23, Issue 1, pp 29–42 | Cite as

Model-based adaptive spatial sampling for occurrence map construction

  • Nathalie Peyrard
  • Régis Sabbadin
  • Daniel Spring
  • Barry Brook
  • Ralph Mac Nally
Article

Abstract

In many environmental management problems, the construction of occurrence maps of species of interest is a prerequisite to their effective management. However, the construction of occurrence maps is a challenging problem because observations are often costly to obtain (thus incomplete) and noisy (thus imperfect). It is therefore critical to develop tools for designing efficient spatial sampling strategies and for addressing data uncertainty. Adaptive sampling strategies are known to be more efficient than non-adaptive strategies. Here, we develop a model-based adaptive spatial sampling method for the construction of occurrence maps. We apply the method to estimate the occurrence of one of the world’s worst invasive species, the red imported fire ant, in and around the city of Brisbane, Australia. Our contribution is threefold: (i) a model of uncertainty about invasion maps using the classical image analysis probabilistic framework of Hidden Markov Random Fields (HMRF), (ii) an original exact method for optimal spatial sampling with HMRF and approximate solution algorithms for this problem, both in the static and adaptive sampling cases, (iii) an empirical evaluation of these methods on simulated problems inspired by the fire ants case study. Our analysis demonstrates that the adaptive strategy can lead to substantial improvement in occurrence mapping.

Keywords

Hidden Markov random fields Optimal sampling approximation Fire ant sampling for mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B 48(3), 259–302 (1986) MathSciNetMATHGoogle Scholar
  2. Bhattacharjya, D., Eidsvik, J., Mukerji, T.: The value of information in spatial decision making. Mathematical Geosciences 42(2), 141–163 (2010) MathSciNetMATHCrossRefGoogle Scholar
  3. Blanchet, J., Vignes, M.: A model-based approach to gene clustering with missing observations reconstruction in a Markov random field framework. Journal of Computational Biology 16(3), 475–486 (2009) MathSciNetCrossRefGoogle Scholar
  4. Bonneau, M., Peyrard, N., Sabbadin, R.: Echantillonnage spatial basé sur le krigeage pour la reconstruction de cartes d’occurence. In: Proceedings of the 17th Conference on Reconnaissance de Forme et Intelligence Artificielle (RFIA) (2010) Google Scholar
  5. Buesco, M., Angulo, J., Alonso, F.: A state-space model approach to optimum spatial sampling design based on entropy. Environmental and Ecological Statistics 5(1), 29–44 (1998) CrossRefGoogle Scholar
  6. Celeux, G., Forbes, F., Peyrard, N.: EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognition 36(1), 131–144 (2003) MATHCrossRefGoogle Scholar
  7. Chalmond, B.: An iterative Gibbsian technique for reconstruction of m-ary images. Pattern Recognition 22(6), 747–761 (1989) CrossRefGoogle Scholar
  8. Chao, C.-T., Thompson, S.T.: Optimal adaptive selection of sampling sites. Environmetrics 12, 517–538 (2001) CrossRefGoogle Scholar
  9. Chiles, J.-P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999) MATHCrossRefGoogle Scholar
  10. Comer, M., Delp, E.: The EM/MPM algorithm for segmentation of texture images: analysis and further experimental results. IEEE Transactions on Image Processing 9(10), 1731–1744 (2000) MATHCrossRefGoogle Scholar
  11. Cook, S.A.: The complexity of theorem-proving procedures. In: Conference Record of Third Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158 (1971) CrossRefGoogle Scholar
  12. Elith, J., Leathwick, J.: Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677–697 (2009) CrossRefGoogle Scholar
  13. Fuentes, M., Chaudhuri, A., Holland, D.: Bayesian entropy for spatial sampling design of environmental data. Environmental and Ecological Statistics 14(3), 323–340 (2007) MathSciNetCrossRefGoogle Scholar
  14. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984) MATHCrossRefGoogle Scholar
  15. Gruijter, J.d., Brus, D., Bierkens, M., Knotters, M.: Sampling for Natural Resource Monitoring. Springer, Berlin (2006) Google Scholar
  16. Guyon, X.: Random Fields on a Network—Modeling, Statistics and Applications. Probability and Its Applications. Springer, Berlin (1995) MATHGoogle Scholar
  17. Li, S.Z.: Markov Random Field Modeling in Computer Vision. Springer, Berlin (1995) CrossRefGoogle Scholar
  18. Lowe, S.J., Browne, M., Boudjelas, S.: 100 of the world’s worst invasive alien species. Invasive Species Specialist Group (ISSG) 12(3), 12 p. (2000) Google Scholar
  19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988) Google Scholar
  20. Peyrard, N., Sabbadin, R., Farrokh, U.: Decision-theoretic optimal sampling in hidden Markov random fields. In: 19th European Conference on Artificial Intelligence (ECAI), pp. 687–692 (2010) Google Scholar
  21. Spall, J.C.: Introduction to Stochastic Search and Optimization. Wiley, New York (2003) MATHCrossRefGoogle Scholar
  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998) Google Scholar
  23. Thompson, S., Seber, G.: Adaptive Sampling. Series in Probability and Statistics. Wiley, New York (1996) MATHGoogle Scholar
  24. Winkler, G.: Image Analysis, Random Fields and Dynamics Monte Carlo Methods: A Mathematical Introduction. Springer, Berlin (1995) CrossRefGoogle Scholar
  25. Wu, F.: The Potts model. Reviews of Modern Physics 54, 235–268 (1982) MathSciNetCrossRefGoogle Scholar
  26. Yedidia, J., Freeman, W., Weiss, Y.: Generalized belief propagation. In: Advances in Neural Information Processing Systems (NIPS), pp. 689–695 (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nathalie Peyrard
    • 1
  • Régis Sabbadin
    • 1
  • Daniel Spring
    • 2
  • Barry Brook
    • 3
  • Ralph Mac Nally
    • 2
  1. 1.Unité de Biométrie et Intelligence Artificielle UR875INRA-ToulouseCastanet-TolosanFrance
  2. 2.School of Biological SciencesMonash UniversityClaytonAustralia
  3. 3.Research Institute for Climate Change and SustainabilityThe University of AdelaideAdelaideAustralia

Personalised recommendations