Robust estimation of the correlation matrix of longitudinal data

Abstract

We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ=DLL D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L,D) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD 2 L using simulations and a real dataset.

This is a preview of subscription content, log in to check access.

References

  1. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  2. Cai, B., Dunson, D.B., Gladen, T.B.: Bayesian covariance selection in generalized linear mixed models. Biometrics 62, 446–457 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  3. Cannon, M.J., Warner, L., Taddei, J.A., Kleinbaum, D.G.: What can go wrong when you assume that correlated data are independent: an illustration from the evaluation of a childhood health intervention in Brazil. Stat. Med. 20(9–10), 1461–1467 (2001)

    Article  Google Scholar 

  4. Carroll, R.J.: Variances are not always nuisance parameters. Biometrics 59(2), 211–220 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  5. Chen, Z., Dunson, D.B.: Random effects selection in linear mixed models. Biometrics 59(4), 762–769 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  6. Chiu, T.Y.M., Leonard, T., Tsui, K.-W.: The matrix-logarithmic covariance model. J. Am. Stat. Assoc. 91(433), 198–210 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  7. Diggle, P., Heagerty, P., Liang, K.-Y., Zeger, S.: Analysis of Longitudinal Data, 2nd edn. Oxford University Press, Oxford (2002)

    Google Scholar 

  8. Diggle, P.J., Verbyla, A.-n.P.: Nonparametric estimation of covariance structure in longitudinal data. Biometrics 54(2), 401–415 (1998)

    MATH  Article  Google Scholar 

  9. Holan, S., Spinka, C.: Maximum likelihood estimation for joint mean-covariance models from unbalanced repeated-measures data. Stat. Probab. Lett. 77(3), 319–328 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  10. Kenward, M.G.: A method for comparing profiles of repeated measurements. Appl. Stat. 36, 296–308 (1987)

    MathSciNet  Article  Google Scholar 

  11. Lange, K.L., Little, R.J.A., Taylor, J.M.G.: Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 84(408), 881–896 (1989)

    MathSciNet  Google Scholar 

  12. Leng, C., Zhang, W., Pan, J.: Semiparametric mean-covariance regression analysis for longitudinal data. J. Am. Stat. Assoc. 105(489), 181–193 (2010)

    MathSciNet  Article  Google Scholar 

  13. Liang, K.Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  14. Lin, T.-I., Wang, Y.-J.: A robust approach to joint modeling of mean and scale covariance for longitudinal data. J. Stat. Plan. Inference 139(9), 3013–3026 (2009)

    MATH  Article  Google Scholar 

  15. Maronna, R., Martin, R., Yohai, V.: Robust Statistics: Theory and Methods. Wiley Series in Probability and Statistics. Wiley, New York (2006)

    Google Scholar 

  16. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall, London (1989)

    Google Scholar 

  17. Pan, J.X., MacKenzie, G.: On modelling mean-covariance structures in longitudinal studies. Biometrika 90, 239–244 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  18. Pinheiro, J.C., Liu, C., Wu, Y.N.: Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. J. Comput. Graph. Stat. 10(2), 249–276 (2001)

    MathSciNet  Article  Google Scholar 

  19. Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3), 677–690 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  20. Pourahmadi, M.: Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika 87(2), 425–435 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  21. Pourahmadi, M.: Foundations of Time Series Analysis and Prediction Theory. Wiley, New York (2001)

    Google Scholar 

  22. Pourahmadi, M.: Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance correlation parameters. Biometrika 94(4), 1006–1013 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  23. Rothman, A.J., Levina, E., Zhu, J.: A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika 97(3), 539–550 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  24. Wang, Y.-G., Carey, V.: Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 90(1), 29–41 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  25. Welsh, A., Richardson, A.: Approaches to the robust estimation of mixed models. In: Maddala, G., Rao, C. (eds.) Robust Inference. Handbook of Statistics, vol. 15, pp. 343–384. Elsevier, Amsterdam (1997)

    Google Scholar 

  26. Ye, H., Pan, J.X.: Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika 93, 927–994 (2006)

    MathSciNet  Article  Google Scholar 

  27. Zellner, A.: Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms. J. Am. Stat. Assoc. 71(354), 400–405 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Zimmerman, D.L., Núñez Antón, V.: Antedependence Models for Longitudinal Data. Chapman & Hall/CRC Press, New York (2009)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Maadooliat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maadooliat, M., Pourahmadi, M. & Huang, J.Z. Robust estimation of the correlation matrix of longitudinal data. Stat Comput 23, 17–28 (2013). https://doi.org/10.1007/s11222-011-9284-6

Download citation

Keywords

  • Cholesky decomposition
  • Correlation modeling
  • Multivariate t
  • Robust estimation