Robust adaptive Metropolis algorithm with coerced acceptance rate

Abstract

The adaptive Metropolis (AM) algorithm of Haario, Saksman and Tamminen (Bernoulli 7(2):223–242, 2001) uses the estimated covariance of the target distribution in the proposal distribution. This paper introduces a new robust adaptive Metropolis algorithm estimating the shape of the target distribution and simultaneously coercing the acceptance rate. The adaptation rule is computationally simple adding no extra cost compared with the AM algorithm. The adaptation strategy can be seen as a multidimensional extension of the previously proposed method adapting the scale of the proposal distribution in order to attain a given acceptance rate. The empirical results show promising behaviour of the new algorithm in an example with Student target distribution having no finite second moment, where the AM covariance estimate is unstable. In the examples with finite second moments, the performance of the new approach seems to be competitive with the AM algorithm combined with scale adaptation.

This is a preview of subscription content, log in to check access.

References

  1. Andrieu, C., Moulines, É.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16(3), 1462–1505 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  2. Andrieu, C., Robert, C.P.: Controlled MCMC for optimal sampling. Tech. Rep. Ceremade 0125, Université Paris Dauphine (2001)

  3. Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18(4), 343–373 (2008)

    MathSciNet  Article  Google Scholar 

  4. Andrieu, C., Moulines, É., Volkov, S.: Convergence of stochastic approximation for Lyapunov stable dynamics: a proof from first principles. Technical report (2004)

  5. Andrieu, C., Moulines, É., Priouret, P.: Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44(1), 283–312 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  6. Atchadé, Y., Fort, G.: Limit theorems for some adaptive MCMC algorithms with subgeometric kernels. Bernoulli 16(1), 116–154 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  7. Atchadé, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11(5), 815–828 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  8. Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Applications of Mathematics, vol. 22. Springer, Berlin (1990)

    Google Scholar 

  9. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  10. Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: LINPACK Users’ Guide. Society for Industrial and Applied Mathematics (1979)

  11. Gelman, A., Roberts, G.O., Gilks, W.R.: Efficient Metropolis jumping rules. In: Bayesian Statistics 5, pp. 599–607. Oxford University Press, Oxford (1996)

    Google Scholar 

  12. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton (1998)

    Google Scholar 

  13. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7(2), 223–242 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  14. Hastie, D.: Toward automatic reversible jump Markov chain Monte Carlo. PhD thesis, University of Bristol (2005)

  15. Huber, P.J.: Robust Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1981)

    Google Scholar 

  16. Jarner, S.F., Hansen, E.: Geometric ergodicity of Metropolis algorithms. Stoch. Process. Appl. 85, 341–361 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  17. Jarner, S.F., Roberts, G.O.: Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Stat. 34(4), 781–815 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications, 2nd edn. Applications of Mathematics: Stochastic Modelling and Applied Probability, vol. 35. Springer, Berlin (2003)

    Google Scholar 

  19. Nummelin, E.: MC’s for MCMC’ists. Int. Stat. Rev. 70(2), 215–240 (2002)

    MATH  Article  Google Scholar 

  20. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (1999)

    Google Scholar 

  21. Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16(4), 351–367 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  22. Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  23. Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44(2), 458–475 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  24. Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18(2), 349–367 (2009)

    MathSciNet  Article  Google Scholar 

  25. Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  26. Saksman, E., Vihola, M.: On the ergodicity of the adaptive Metropolis algorithm on unbounded domains. Ann. Appl. Probab. 20(6), 2178–2203 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  27. Vihola, M.: Grapham: Graphical models with adaptive random walk Metropolis algorithms. Comput. Stat. Data Anal. 54(1), 49–54 (2010)

    MathSciNet  Article  Google Scholar 

  28. Vihola, M.: Can the adaptive Metropolis algorithm collapse without the covariance lower bound? Electron. J. Probab. 16, 45–75 (2011a)

    MathSciNet  MATH  Article  Google Scholar 

  29. Vihola, M.: On the stability and ergodicity of adaptive scaling Metropolis algorithms. Preprint (2011b). arXiv:0903.4061v3

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matti Vihola.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vihola, M. Robust adaptive Metropolis algorithm with coerced acceptance rate. Stat Comput 22, 997–1008 (2012). https://doi.org/10.1007/s11222-011-9269-5

Download citation

Keywords

  • Acceptance rate
  • Adaptive Markov chain Monte Carlo
  • Ergodicity
  • Metropolis algorithm
  • Robustness