Statistics and Computing

, Volume 22, Issue 6, pp 1239–1256 | Cite as

Efficient likelihood-free Bayesian Computation for household epidemics



Considerable progress has been made in applying Markov chain Monte Carlo (MCMC) methods to the analysis of epidemic data. However, this likelihood based method can be inefficient due to the limited data available concerning an epidemic outbreak. This paper considers an alternative approach to studying epidemic data using Approximate Bayesian Computation (ABC) methodology. ABC is a simulation-based technique for obtaining an approximate sample from the posterior distribution of the parameters of the model and in an epidemic context is very easy to implement. A new approach to ABC is introduced which generates a set of values from the (approximate) posterior distribution of the parameters during each simulation rather than a single value. This is based upon coupling simulations with different sets of parameters and we call the resulting algorithm coupled ABC. The new methodology is used to analyse final size data for epidemics amongst communities partitioned into households. It is shown that for the epidemic data sets coupled ABC is more efficient than ABC and MCMC-ABC.


Approximate Bayesian Computation Household epidemic data Stochastic epidemic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addy, C.L., Longini, I.M., Haber, M.: A generalized stochastic model for the analysis of infectious disease final size data. Biometrics 47, 961–974 (1991) MATHCrossRefGoogle Scholar
  2. Baguelin, M., Newton, J.R., Demiris, N., Daly, J., Mumford, J.A., Wood, J.L.N.: Control of equine influenza: scenario testing using a realistic metapopulation model of spread. J. R. Soc. Interface 7, 67–79 (2010) CrossRefGoogle Scholar
  3. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and Its Applications, 2nd edn. Griffin, London (1975) MATHGoogle Scholar
  4. Ball, F.G., Lyne, O.D.: Optimal vaccination policies for stochastic epidemics among a population of households. Math. Biosci. 177–178, 333–354 (2002) MathSciNetCrossRefGoogle Scholar
  5. Ball, F.G., Mollison, D., Scalia-Tomba, G.: Epidemics with two levels of mixing. Ann. Appl. Probab. 7, 46–89 (1997) MathSciNetMATHCrossRefGoogle Scholar
  6. Beaumont, M., Zhang, W., Balding, D.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002) Google Scholar
  7. Bortot, P., Coles, S.G., Sisson, S.A.: Inference for stereological extremes. J. Am. Stat. Assoc. 102, 84–92 (2007) MathSciNetMATHCrossRefGoogle Scholar
  8. Clancy, D., O’Neill, P.: Exact Bayesian inference and model selection for stochastic models of epidemics among a community of households. Scand. J. Stat. 34, 259–274 (2007) MathSciNetMATHCrossRefGoogle Scholar
  9. Demiris, N., O’Neill, P.D.: Bayesian inference for stochastic epidemic models with two levels of mixing. Scand. J. Stat. 32, 265–280 (2005a) MathSciNetMATHCrossRefGoogle Scholar
  10. Demiris, N., O’Neill, P.: Bayesian inference for stochastic multitype epidemics in structured populations via random graphs. J. R. Stat. Soc. B 67, 731–745 (2005b) MathSciNetMATHCrossRefGoogle Scholar
  11. Demiris, N., O’Neill, P.: Computation of final outcome probabilities for the generalised stochastic epidemic. Stat. Comput. 16, 309–317 (2006) MathSciNetCrossRefGoogle Scholar
  12. Fox, J.P., Hall, C.E.: Viruses in Families. PSG Publishing, Littleton (1980) Google Scholar
  13. Gibson, G.: Markov chain Monte Carlo methods for fitting spatio-temporal stochastic models in plant epidemiology. J. R. Stat. Soc. C 46, 215–233 (1997) MATHCrossRefGoogle Scholar
  14. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976) MathSciNetCrossRefGoogle Scholar
  15. Grelaud, A., Robert, C.P., Marin, J.-M.: ABC methods for model choice in Gibbs random fields. C. R. Acad. Sci. Paris, Ser. I 347, 205–210 (2009) MathSciNetMATHCrossRefGoogle Scholar
  16. Longini, I.M., Koopman, J.S., Monto, A.S., Fox, J.P.: Estimating household and community transmission parameters for influenza. Am. J. Epidemiol. 115, 736–751 (1982) Google Scholar
  17. Ludwig, D.: Final size distributions for epidemics. Math. Biosci. 23, 33–46 (1975) MathSciNetMATHCrossRefGoogle Scholar
  18. Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 100, 15324–15328 (2003) CrossRefGoogle Scholar
  19. Monto, A.S., Koopman, J.S., Longini, I.M.: Tecumseh study of illness. XIII. Influenza infection and disease, 1976–1981. Am. J. Epidemiol. 121, 811–822 (1985) Google Scholar
  20. Neal, P., Roberts, G.: Statistical inference and model selection for Hagelloch data set. Biostatistics 5, 249–261 (2004) MATHCrossRefGoogle Scholar
  21. Neal, P., Roberts, G.: A case study in non-centering for data augmentation: Stochastic epidemics. Stat. Comput. 15, 315–327 (2005) MathSciNetCrossRefGoogle Scholar
  22. O’Neill, P.: Bayesian inference for stochastic multitype epidemics in structured populations using sample data. Biostatistics 10, 779–791 (2009) CrossRefGoogle Scholar
  23. O’Neill, P.D., Roberts, G.O.: Bayesian inference for partially observed stochastic epidemics. J. R. Stat. Soc. A 162, 121–129 (1999) CrossRefGoogle Scholar
  24. O’Neill, P.D., Balding, D.J., Becker, N.G., Eerola, M., Mollison, D.: Analyses of infectious disease data from household outbreaks by Markov chain Monte Carlo methods. J. R. Stat. Soc. C 49, 517–542 (2000) MathSciNetMATHCrossRefGoogle Scholar
  25. Papaspoliopoulos, O., Roberts, G.O., Sköld, M.: Non-centered parameterisations for hierarchical models and data augmentation. In: Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Statistics 7, pp. 307–326. Oxford University Press, London (2003) Google Scholar
  26. Ratmann, O., Jørgensen, O., Hinkley, T., Stumpf, M., Richardson, S., Wiuf, C.: Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum. PLoS Comput. Biol. 3, e320 (2007) CrossRefGoogle Scholar
  27. Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of Random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120 (1997) MathSciNetMATHCrossRefGoogle Scholar
  28. Sellke, T.: On the asymptotic distribution of the size of a stochastic epidemic. J. Appl. Probab. 20, 390–394 (1983) MathSciNetMATHCrossRefGoogle Scholar
  29. Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104, 1760–1765 (2007) MathSciNetMATHCrossRefGoogle Scholar
  30. Tallmon, D.A., Luikart, G., Beaumont, M.A.: Comparative Evaluation of a New Effective Population Size Estimator Based on Approximate Bayesian Computation. Genetics 167, 977–988 (2004) CrossRefGoogle Scholar
  31. Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997) Google Scholar
  32. Toni, T., Stumpf, M.P.H.: Simulation-based model selection for dynamical systems and population biology. Bioinformatics 26, 104–110 (2010) CrossRefGoogle Scholar
  33. White, S.: Stochastic epidemics conditioned on their final outcome. PhD Thesis, University of Nottingham (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations