Statistics and Computing

, Volume 21, Issue 4, pp 671–681 | Cite as

Multiscale interpretation of taut string estimation and its connection to Unbalanced Haar wavelets



We compare two state-of-the-art non-linear techniques for nonparametric function estimation via piecewise constant approximation: the taut string and the Unbalanced Haar methods. While it is well-known that the latter is multiscale, it is not obvious that the former can also be interpreted as multiscale. We provide a unified multiscale representation for both methods, which offers an insight into the relationship between them as well as suggesting lessons both methods can learn from each other.


Multiscale Unbalanced Haar wavelets Taut string Nonparametric function estimation 


  1. Barlow, R., Bartholomew, D., Bremner, J., Brunk, H.: Statistical Inference under Order Restrictions. Wiley, New York (1972) MATHGoogle Scholar
  2. Breiman, L., Friedman, J.H., Olshen, RA, Stone, C.J., Steinberg, D., Colla, P.: CART: Classification and Regression Trees. Wadsworth, Belmont (1983) Google Scholar
  3. Brodsky, B.E., Darkhovsky, B.S.: Nonparametric Methods in Change-point Problems. Springer, Berlin (1993) Google Scholar
  4. Comte, F., Rozenholc, Y.: A new algorithm for fixed design regression and denoising. Ann. Inst. Stat. Math. 56, 449–473 (2004) MATHCrossRefMathSciNetGoogle Scholar
  5. Davies, P.L., Kovac, A.: Local extremes, runs, strings, and multiresolution. Ann. Stat. 29, 1–65 (2001) MATHCrossRefMathSciNetGoogle Scholar
  6. DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998) CrossRefMathSciNetGoogle Scholar
  7. Donoho, D.: CART and best-ortho-basis: A connection. Ann. Stat. 25, 1870–1911 (1997) MATHCrossRefMathSciNetGoogle Scholar
  8. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994) MATHCrossRefMathSciNetGoogle Scholar
  9. Dümbgen, L., Kovac, A.: Extensions of smoothing via taut strings. Electron. J. Stat. 3, 41–75 (2009) CrossRefMathSciNetGoogle Scholar
  10. Engel, J.: The multiresolution histogram. Metrika 46, 41–57 (1997) MATHCrossRefMathSciNetGoogle Scholar
  11. Fryzlewicz, P.: Unbalanced Haar technique for nonparametric function estimation. J. Am. Stat. Assoc. 102, 1318–1327 (2007) MATHCrossRefMathSciNetGoogle Scholar
  12. Fryzlewicz, P.: Data-driven wavelet-Fisz methodology for nonparametric function estimation. Electron. J. Stat. 2, 863–896 (2008) CrossRefMathSciNetGoogle Scholar
  13. Girardi, M., Sweldens, W.: A new class of unbalanced Haar wavelets that form an unconditional basis for Lp on general measure spaces. J. Fourier Anal. Appl. 3, 457–474 (1997) MATHCrossRefMathSciNetGoogle Scholar
  14. Kolaczyk, E., Nowak, R.: Multiscale generalised linear models for nonparametric function estimation. Biometrika 92, 119–133 (2005) MATHCrossRefMathSciNetGoogle Scholar
  15. Mammen, E., van de Geer, S.: Penalized quasi-likelihood estimation in partial linear models. Ann. Stat. 25, 1014–1035 (1997) MATHCrossRefGoogle Scholar
  16. Polzehl, J., Spokoiny, V.: Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc., Ser. B 62, 335–354 (2000) CrossRefMathSciNetGoogle Scholar
  17. Venkatraman, E.S.: Consistency results in multiple change-point problems. Ph.D. Thesis, Stanford University (1993) Google Scholar
  18. Vidakovic, B.: Statistical Modeling by Wavelets. Wiley, New York (1999) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Statistics, Columbia HouseLondon School of EconomicsLondonUK

Personalised recommendations