Statistics and Computing

, Volume 21, Issue 4, pp 537–553 | Cite as

Inferring multiple graphical structures

  • Julien ChiquetEmail author
  • Yves Grandvalet
  • Christophe Ambroise


Gaussian Graphical Models provide a convenient framework for representing dependencies between variables. Recently, this tool has received a high interest for the discovery of biological networks. The literature focuses on the case where a single network is inferred from a set of measurements. But, as wetlab data is typically scarce, several assays, where the experimental conditions affect interactions, are usually merged to infer a single network. In this paper, we propose two approaches for estimating multiple related graphs, by rendering the closeness assumption into an empirical prior or group penalties. We provide quantitative results demonstrating the benefits of the proposed approaches. The methods presented in this paper are embeded in the R package simone from version 1.0-0 and later.


Network inference Gaussian graphical model Multiple sample setup Cooperative-LASSO Intertwined-LASSO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambroise, C., Chiquet, J., Matias, C.: Inferring sparse Gaussian graphical models with latent structure. Electron. J. Stat. 3, 205–238 (2009) CrossRefMathSciNetGoogle Scholar
  2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008) CrossRefGoogle Scholar
  3. Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485–516 (2008) MathSciNetGoogle Scholar
  4. Baxter, J.: A model of inductive bias learning. J. Artif. Int. Res. 12(1), 149–198 (2000) zbMATHMathSciNetGoogle Scholar
  5. Bengio, S., Mariéthoz, J., Keller, M.: The expected performance curve. In: ICML Workshop on ROC Analysis in Machine Learning (2005) Google Scholar
  6. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997) CrossRefMathSciNetGoogle Scholar
  7. Charbonnier, C., Chiquet, J., Ambroise, C.: Weighted-lasso for structured network inference from time course data. Stat. Appl. Genet. Mol. Biol. 9(1) (2010) Google Scholar
  8. Drummond, C., Holte, R.C.: Cost curves: An improved method for visualizing classifier performance. Mach. Learn. 65(1), 95–130 (2006) CrossRefGoogle Scholar
  9. Efron, B.: The future of indirect evidence. Tech. Rep. 250, Division of Biostatistics. Stanford University (2009) Google Scholar
  10. Friedman, J.H.: Regularized discriminant analysis. J Am. Stat. Assoc. 84(405), 165–175 (1989) CrossRefGoogle Scholar
  11. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008) zbMATHCrossRefGoogle Scholar
  12. Kim, Y., Kim, J., Kim, Y.: Blockwise sparse regression. Stat. Sin. 16, 375–390 (2006) zbMATHGoogle Scholar
  13. Kolar, M.K., Le Song, A.A., Xing, E.P.: Estimating time-varying networks. Ann. Appl. Stat. (2009) Google Scholar
  14. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34(3), 1436–1462 (2006) zbMATHCrossRefGoogle Scholar
  15. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  16. Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000a) zbMATHCrossRefMathSciNetGoogle Scholar
  17. Osborne, M.R., Presnell, B., Turlach, B.A.: On the LASSO and its dual. J. Comput. Graph. Stat. 9(2), 319–337 (2000b) CrossRefMathSciNetGoogle Scholar
  18. Ravikumar, P., Wainwright, M.J., Lafferty, J.: High-dimensional Ising model selection using 1-regularized logistic regression. Ann. Stat. 38, 1287–1319 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  19. Rocha, G.V., Zhao, P., Yu, B.: A path following algorithm for sparse pseudo-likelihood inverse covariance estimation (splice) (2008) Google Scholar
  20. Roth, V., Fischer, B.: The group-lasso for generalized linear models: uniqueness of solutions and efficent algorithms. In: International Conference on Machine Learning (2008) Google Scholar
  21. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., Nolan, G.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005) CrossRefGoogle Scholar
  22. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005) Google Scholar
  23. Toh, H., Horimoto, K.: Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 18, 287–297 (2002) CrossRefGoogle Scholar
  24. Villers, F., Schaeffer, B., Bertin, C., Huet, S.: Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems. Stat. Appl. Genet. Mol. Biol. 7(2) (2008) Google Scholar
  25. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc., Ser. B: Stat. Methodol. 68(1), 49–67 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  26. Yuan, M., Lin, Y.: Model selection and estimation in the Gaussian graphical model. Biometrika 94(1), 19–35 (2007) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Julien Chiquet
    • 1
    Email author
  • Yves Grandvalet
    • 2
  • Christophe Ambroise
    • 1
  1. 1.CNRS UMR 8071, Statistique et GénomeUniversité d’Évry Val d’EssonneÉvryFrance
  2. 2.CNRS UMR 6599 HeudiasycUniversité de Technologie de CompiègneCompiègne CedexFrance

Personalised recommendations