Advertisement

Statistics and Computing

, Volume 21, Issue 1, pp 83–91 | Cite as

A stable estimator of the information matrix under EM for dependent data

  • Jin-Chuan Duan
  • Andras FulopEmail author
Article

Abstract

This article develops a new and stable estimator for information matrix when the EM algorithm is used in maximum likelihood estimation. This estimator is constructed using the smoothed individual complete-data scores that are readily available from running the EM algorithm. The method works for dependent data sets and when the expectation step is an irregular function of the conditioning parameters. In comparison to the approach of Louis (J. R. Stat. Soc., Ser. B 44:226–233, 1982), this new estimator is more stable and easier to implement. Both real and simulated data are used to demonstrate the use of this new estimator.

Keywords

Particle filter EM Information matrix Kalman filter GARCH Maximum likelihood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cappe, O., Moulines, E.: On the use of particle filtering for maximum likelihood parameter estimation. In: European Signal Processing Conference (EUSIPCO), Antalya, Turkey (2005) Google Scholar
  2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Am. Stat. Assoc., Ser. B 39, 1–38 (1977) zbMATHMathSciNetGoogle Scholar
  3. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001) zbMATHGoogle Scholar
  4. Jamshidian, M., Jennrich, R.I.: Standard errors for EM estimation. J. R. Stat. Soc., Ser. B 62, 257–270 (2000) CrossRefMathSciNetGoogle Scholar
  5. Kiefer, N.M., Vogelsang, T.J.: A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econom. Theory 21, 1130–1164 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  6. Louis, T.A.: Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc., Ser. B 44, 226–233 (1982) zbMATHMathSciNetGoogle Scholar
  7. Meilijson, I.: A fast improvement to the EM algorithm on its own terms. J. R. Stat. Soc., Ser. B 51, 127–138 (1989) zbMATHMathSciNetGoogle Scholar
  8. Meng, X.L., Rubin, D.B.: Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. J. Am. Stat. Assoc. 86, 899–909 (1991) CrossRefGoogle Scholar
  9. Newey, W.K., West, K.D.: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703–708 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  10. Olsson, J., Cappe, R., Douc, R., Moulines, E.: Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models. Bernoulli 14, 155–179 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  11. Shumway, R.H., Stoffer, D.S.: An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3, 253–264 (1982) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Risk Management Institute and Department of FinanceNational University of SingaporeSingaporeSingapore
  2. 2.ESSEC Business SchoolParisFrance

Personalised recommendations