Abstract
Testing for separability of space-time covariance functions is of great interest in the analysis of space-time data. In this paper we work in a parametric framework and consider the case when the parameter identifying the case of separability of the associated space-time covariance lies on the boundary of the parametric space. This situation is frequently encountered in space-time geostatistics. It is known that classical methods such as likelihood ratio test may fail in this case.
We present two tests based on weighted composite likelihood estimates and the bootstrap method, and evaluate their performance through an extensive simulation study as well as an application to Irish wind speeds. The tests are performed with respect to a new class of covariance functions, which presents some desirable mathematical features and has margins of the Generalized Cauchy type. We also apply the test on a element of the Gneiting class, obtaining concordant results.
This is a preview of subscription content, log in to check access.
References
Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14, 1134–1149 (2008)
Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussions). J. R. Stat. Soc. B 36, 192–236 (1974)
Bevilacqua, M., Gaetan, C., Mateu, J., Porcu, E.: Estimating space and space-time covariance functions: a weighted composite likelihood approach. J. Am. Stat. Assoc. (2009, to appear)
Cox, D.R.: Partial likelihood. Biometrika 62, 269–276 (1975)
Cressie, N., Huang, H.: Classes of nonseparable, spatiotemporal stationary covariance functions. J. Am. Stat. Assoc. 94, 1330–1340 (1999)
Crujeiras, R.M., Fernández-Casal, R., González-Manteiga, W.: Goodness-of-fit tests for spatial spectral density. Technical report 07-01, Departamento de Estadística e Investigación Operativa, Universidade de Santiago de Compostela (2008)
Curriero, F., Lele, S.: A composite likelihood approach to semivariogram estimation. J. Agric. Biol. Environ. Stat. 4, 9–28 (1999)
De Luna, X., Genton, M.: Predictive spatio-temporal models for spatially sparse environmental data. Stat. Sinica 15, 547–568 (2005)
Efron, B.: The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia (1982)
Feng, Z.Z., McCulloch, C.E.: Using bootstrap likelihood ratios in finite mixture models. J. R. Stat. Soc. Ser. B 58, 609–617 (1996)
Fuentes, M.: Interpolation of nonstationary air pollution processes: a spatial spectral approach. Stat. Model. 2, 281–298 (2002)
Fuentes, M.: A formal test for nonstationarity of spatial stochastic processes. J. Multivar. Anal. 96, 30–54 (2005)
Fuentes, M.: Testing for separability of spatial-temporal covariance functions. J. Stat. Plan. Inference 136, 447–466 (2006)
Gneiting, T.: Stationary covariance functions for space-time data. J. Am. Stat. Assoc. 97, 590–600 (2002)
Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. Soc. Indust. Appl. Math. Rev. 46, 269–282 (2004)
Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical space-time models, stationarity, separability and full symmetry. In: Finkenstadt, B., Held, L., Isham, V. (eds.) Statistical Methods for Spatio-Temporal Systems, pp. 151–175. Chapman & Hall/CRC, Boca Raton (2007)
Godambe, V.: An optimum property of regular maximum likelihood equation. Ann. Math. Stat. 31, 1208–1211 (1960)
Guan, Y., Sherman, M., Calvin, J.A.: A nonparametric test for spatial isotropy using subsampling. J. Am. Stat. Assoc. 99, 810–821 (2004)
Hartigan, J.A.: A failure of likelihood asymptotic for normal mixtures. In: LeCam, L., Olshen, R.A. (eds.) Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, vol. II, pp. 807–810. Wadsworth and Brooks, Belmont (1985)
Haslett, J., Raftery, A.: Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. Appl. Stat. 38, 1–50 (1989)
Heagerty, P., Lumley, T.: Window subsampling of estimating functions with application to regression models. J. Am. Stat. Assoc. 95, 197–211 (2000)
Heyde, C.: Quasi-likelihood and Its Application: A General Approach to Optimal Parameter Estimation. Springer, New York (1997)
Kolesárová, A.: Limit properties of quasi-arithmetic means. Fuzzy Sets Syst. 124, 65–71 (2001)
Li, B., Genton, M.G., Sherman, M.: A nonparametric assessment of properties of space-time covariance functions. J. Am. Stat. Assoc. 102, 736–744 (2007)
Lindsay, B.: Composite likelihood methods. Contemp. Math. 80, 221–239 (1988)
Lu, H., Zimmerman, D.L.: Testing for directional symmetry in spatial dependence using the periodogram. J. Stat. Plan. Inference 129, 369–385 (2005)
Ma, C.: A class of stationary random fields with a simple correlation structure. J. Multivar. Anal. 94, 313–327 (2004)
Mardia, K., Marshall, R.: Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71, 135–146 (1984)
Mateu, J., Juan, P., Porcu, E.: Geostatistical analysis through spectral techniques: some words of caution. Commun. Stat. Comput. Simul. 36, 1035–1051 (2007a)
Mateu, J., Porcu, E., Nicolis, O.: A note on decoupling of local and global behaviour for the Dagum random field. Probab. Eng. Mech. 22, 320–329 (2007b)
Mitchell, M., Genton, M.G., Gumpertz, M.: Testing for separability of space-time covariances. Environmetrics 16, 819–831 (2005)
Mitchell, M., Genton, M.G., Gumpertz, M.: A likelihood ratio test for separability of covariances. J. Multivar. Anal. 97, 1025–1043 (2006)
Porcu, E., Gregori, P., Mateu, J.: Nonseparable stationary anisotropic space time covariance functions. Stoch. Environ. Res. Risk Assess. 21, 113–122 (2006)
Porcu, E., Mateu, J., Christakos, G.: Quasi-arithmetic means of covariance functions with potential applications to space-time data. J. Multivar. Anal. (2009, to appear). doi:10.1016/j.jmva.2009.02.013
Scaccia, L., Martin, R.J.: Testing for simplification in spatial models. In: COMPSTAT 2002, pp. 581–586. Physica, Heidelberg (2002)
Scaccia, L., Martin, R.J.: Testing axial symmetry and separability of lattice processes. J. Stat. Plan. Inference 131, 19–39 (2005)
Stein, M.: Space-time covariance functions. J. Am. Stat. Assoc. 100, 310–321 (2005)
Varin, C., Vidoni, P.: A note on composite likelihood inference and model selection. Biometrika 52, 519–528 (2005)
Wang, H.H., Zhang, H.: Model-based clustering for cross-sectional time series data. J. Agric. Biol. Environ. Stat. 7, 107–127 (2002)
Zhang, H.: Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250–261 (2004)
Zhang, H., Zimmerman, D.: Towards reconciling two asymptotic frameworks in spatial statistics. Biometrika 92, 921–936 (2005)
Author information
Affiliations
Corresponding author
Additional information
Research supported by grant MTM2007-62923 from Spanish Ministry of Education and Science.
Rights and permissions
About this article
Cite this article
Bevilacqua, M., Mateu, J., Porcu, E. et al. Weighted composite likelihood-based tests for space-time separability of covariance functions. Stat Comput 20, 283–293 (2010). https://doi.org/10.1007/s11222-009-9121-3
Received:
Accepted:
Published:
Issue Date:
Keywords
- Fractal dimension
- Full symmetry
- Hurst effect
- Space-time covariance functions
- Space-time separability
- Weighted composite likelihood