Advertisement

Statistics and Computing

, 19:465 | Cite as

A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences

  • Frédéric J. P. Richard
  • Adeline M. M. Samson
  • Charles A. Cuénod
Article

Abstract

This paper is about object deformations observed throughout a sequence of images. We present a statistical framework in which the observed images are defined as noisy realizations of a randomly deformed template image. In this framework, we focus on the problem of the estimation of parameters related to the template and deformations. Our main motivation is the construction of estimation framework and algorithm which can be applied to short sequences of complex and highly-dimensional images. The originality of our approach lies in the representations of the template and deformations, which are defined on a common triangulated domain, adapted to the geometry of the observed images. In this way, we have joint representations of the template and deformations which are compact and parsimonious. Using such representations, we are able to drastically reduce the number of parameters in the model. Besides, we adapt to our framework the Stochastic Approximation EM algorithm combined with a Markov Chain Monte Carlo procedure which was proposed in 2004 by Kuhn and Lavielle. Our implementation of this algorithm takes advantage of some properties which are specific to our framework. More precisely, we use the Markovian properties of deformations to build an efficient simulation strategy based on a Metropolis-Hasting-Within-Gibbs sampler. Finally, we present some experiments on sequences of medical images and synthetic data.

Keywords

SAEM algorithm Medical image sequence Template estimation Image registration Image denoising 

References

  1. Allassonnière, S., Amit, Y., Trouvé, A.: Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc.: Ser. B Stat. Methodol. 69(1), 3–29 (2007a) MathSciNetGoogle Scholar
  2. Allassonnière, S., Kuhn, E., Trouvé, A.: Bayesian deformable models building via stochastic approximation algorithm: a convergence study. arXiv:0706.0787 (2007b)
  3. Amit, Y., Grenander, U., Piccioni, M.: Structural image restoration through deformable templates. J. Am. Stat. Assoc. 86(414), 376–387 (1991) CrossRefGoogle Scholar
  4. Andrieu, C., Moulines, E.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16, 1462–1505 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. Atchadé, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11, 815–828 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986) CrossRefGoogle Scholar
  7. Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 78–87 (1990) CrossRefGoogle Scholar
  8. Celeux, G., Diebolt, J.: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Stat. Q. 2, 73–82 (1985) Google Scholar
  9. Cuénod, C.A., Fournier, L., Balvay, D., Guinebretiére, J.M.: Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31(2), 188–193 (2006) CrossRefGoogle Scholar
  10. Delyon, B., Lavielle, M., Moulines, E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94–128 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977) zbMATHMathSciNetGoogle Scholar
  12. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984) zbMATHCrossRefGoogle Scholar
  13. Glasbey, C.A., Mardia, K.V.: A penalized likelihood approach to image warping (with discussion). J. R. Stat. Soc. C 63, 465–514 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  14. Grenander, U.: General Pattern Theory. Oxford University Press, London (1994) zbMATHGoogle Scholar
  15. Grenander, U., Miller, M.: Computational anatomy: an emerging discipline. Q. Appl. Math. 4, 617–694 (1998) MathSciNetGoogle Scholar
  16. Judd, R.M., Lugo-Olivieri, C.H., Araj, M., Kondo, T., et al.: Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92(7), 1902–1910 (1995) Google Scholar
  17. Kuhl, C.: The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244(2), 356–378 (2007) CrossRefMathSciNetGoogle Scholar
  18. Kuhn, E., Lavielle, M.: Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM Probab. Stat. 8, 115–131 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  19. Lavielle, M., Moulines, E.: A simulated annealing version of the EM algorithm for non-Gaussian deconvolution. Stat. Comput. 7, 229–236 (1997) CrossRefGoogle Scholar
  20. Levine, R., Casella, G.: Optimizing random scan Gibbs samplers. J. Multivar. Anal. 97, 2071–2100 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  21. Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 24(1), 101–121 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  22. Miles, K.A.: Perfusion CT for the assessment of tumor vascularity: which protocol? Br. J. Radiol. 76(1), 36–42 (2003) CrossRefMathSciNetGoogle Scholar
  23. O’Connor, J.P., Jackson, A., Parker, G.J., Jayson, G.C.: DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96(2), 189–195 (2007) CrossRefGoogle Scholar
  24. Padhani, A.R.: Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J. Magn. Reson. Imaging 16(4), 407–422 (2002) CrossRefGoogle Scholar
  25. Wei, G.C., Tanner, M.A.: Calculating the content and boundary of the highest posterior density region via data augmentation. Biometrika 77, 649–652 (1990) CrossRefMathSciNetGoogle Scholar
  26. Wintermark, M.: Brain perfusion-CT in acute stroke patients. Eur. Radiol. 15(4), D28–31 (2005) CrossRefGoogle Scholar
  27. Zahra, M.A., Hollingsworth, K.G., Sala, E., Lomas, D.J., Tan, L.T.: Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol. 8(1), 63–74 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Frédéric J. P. Richard
    • 1
  • Adeline M. M. Samson
    • 1
  • Charles A. Cuénod
    • 2
  1. 1.Department of MathematicsUniversity Paris DescartesParisFrance
  2. 2.Hospital Georges Pompidou, Service of RadiologyUniversity Paris DescartesParisFrance

Personalised recommendations