Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On projection-based tests for directional and compositional data

Abstract

A new class of nonparametric tests, based on random projections, is proposed. They can be used for several null hypotheses of practical interest, including uniformity for spherical (directional) and compositional data, sphericity of the underlying distribution and homogeneity in two-sample problems on the sphere or the simplex.

The proposed procedures have a number of advantages, mostly associated with their flexibility (for example, they also work to test “partial uniformity” in a subset of the sphere), computational simplicity and ease of application even in high-dimensional cases.

This paper includes some theoretical results concerning the behaviour of these tests, as well as a simulation study and a detailed discussion of a real data problem in astronomy.

This is a preview of subscription content, log in to check access.

References

  1. Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London (1986)

  2. Aitchison, J., Egozcue, J.J.: Compositional data analysis: Where are we and where should we be heading? Math. Geol. 37, 829–850 (2005)

  3. Berk, R.H., Jones, D.H.: Relatively optimal combinations of tests statistics. Scand. J. Stat. 5, 158–162 (1978)

  4. Brown, T.C., Cartwright, D.I., Eagleson, G.K.: Correlations and characterizations of the uniform distribution. Aust. J. Stat. 28, 89–96 (1986)

  5. Cuesta-Albertos, J.A., Fraiman, R., Ransford, T.: Random projections and goodness-of-fit tests in infinite-dimensional spaces. Bull. Braz. Math. Soc. 37, 1–25 (2006)

  6. Cuesta-Albertos, J.A., del Barrio, T., Fraiman, R., Matrán, C.: The random projection method in goodness of fit for functional data. Comput. Stat. Data Anal. 51, 4814–4831 (2007a)

  7. Cuesta-Albertos, J.A., Fraiman, R., Ransford, T.: A sharp form of the Cramer–Wold theorem. J. Theor. Probab. 20, 201–209 (2007b)

  8. Cuevas, A., Fraiman, R.: On depth measures and dual statistics: A methodology for dealing with general data. J. Multivariate Anal. (2008, to appear)

  9. Fang, K.T., Kotz, S.K., Ng, K.W.: Symmetric Multivariate and Related Distributions. Chapman & Hall, London (1990)

  10. Figueiredo, A.: Comparison of tests of uniformity defined on the hypersphere. Stat. Probab. Lett. 77, 329–334 (2007)

  11. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1993)

  12. Giné, E.: Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms. Ann. Stat. 3, 1243–1266 (1975)

  13. Juan, J., Prieto, F.J.: Using angles to identify concentrated multivariate outliers. Technometrics 43, 311–322 (2001)

  14. Jupp, P.E., Kim, P.T., Koo, J.Y., Wiegert, P.: The intrinsic distribution and selection bias of long-period cometary orbits. J. Am. Stat. Assoc. 98, 515–521 (2003)

  15. Lattin, J., Carroll, J.D., Green, P.E.: Analyzing Multivariate Data. Brooks/Cole, Pacific Grove (2003)

  16. Lund, U., Agostinelli, C.: Circular: Circular Statistics. R package version 0.3-6 (2006)

  17. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, Chichester (2000)

  18. Marsden, B.G., Williams, G.V.: Catalogue of Cometary Orbits, 8th edn. Minor Planet Center, Smithsonian Astrophysical Observatory, Cambridge (1993)

  19. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2006). ISBN 3-900051-07-0, URL http://www.R-project.org

  20. Shohat, J.A., Tamarkin, J.D.: The Problem of Moments. Am. Math. Soc., Providence (1943)

  21. Stephens, M.A.: Use of the von Mises distribution to analyse continuous proportions. Biometrika 69, 197–203 (1982)

  22. Teets, D.A., Whitehead, K.: Computation of planetary orbits. College Math. J. 29, 397–404 (1998)

  23. Timm, N.H.: Applied Multivariate Analysis. Springer, New York (2002)

  24. Ulrich, G.: Computer generation of distributions on the m-sphere. Appl. Stat. 33, 158–163 (1984)

  25. van den Boogaart, K.G., Tolosana, R., Bren, M.: Compositions: Compositional Data Analysis. R package version 0.91-6, URL: http://www.stat.boogaart.de/compositions (2006)

  26. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002)

  27. Wood, A.T.A.: Simulation of the von Mises-Fisher distribution. Commun. Stat. Simul. Comput. 23(1), 157–164 (1994)

Download references

Author information

Correspondence to Juan A. Cuesta-Albertos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuesta-Albertos, J.A., Cuevas, A. & Fraiman, R. On projection-based tests for directional and compositional data. Stat Comput 19, 367 (2009). https://doi.org/10.1007/s11222-008-9098-3

Download citation

Keywords

  • Compositional data
  • Directional data
  • Sphericity
  • Uniformity