On the computation of the noncentral F and noncentral beta distribution

Abstract

Unfortunately many of the numerous algorithms for computing the comulative distribution function (cdf) and noncentrality parameter of the noncentral F and beta distributions can produce completely incorrect results as demonstrated in the paper by examples. Existing algorithms are scrutinized and those parts that involve numerical difficulties are identified. As a result, a pseudo code is presented in which all the known numerical problems are resolved. This pseudo code can be easily implemented in programming language C or FORTRAN without understanding the complicated mathematical background.

Symbolic evaluation of a finite and closed formula is proposed to compute exact cdf values. This approach makes it possible to check quickly and reliably the values returned by professional statistical packages over an extraordinarily wide parameter range without any programming knowledge.

This research was motivated by the fact that a very useful table for calculating the size of detectable effects for ANOVA tables contains suspect values in the region of large noncentrality parameter values compared to the values obtained by Patnaik’s 2-moment central-F approximation. The cause is identified and the corrected form of the table for ANOVA purposes is given. The accuracy of the approximations to the noncentral-F distribution is also discussed.

This is a preview of subscription content, log in to check access.

References

  1. Benton, D., Krishnamoorthy, K.: Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient. Comput. Stat. Data Anal. 43, 249–267 (2003)

    MathSciNet  Google Scholar 

  2. Chattamvelli, R.: On the doubly noncentral F distribution. Comput. Stat. Data Anal. 20, 481–489 (1995)

    Article  MATH  Google Scholar 

  3. Chattamvelli, R., Shanmugam, R.: Algorithm AS 310, computing the non-central beta distribution function. Appl. Stat. 46(1), 146–156 (1997)

    MATH  Google Scholar 

  4. Ding, C.G.: On using Newton’s method for computing the noncentrality parameter of the noncentral F distribution. Commun. Stat. Simul. Comput. 26(1), 259–268 (1997)

    Article  MATH  Google Scholar 

  5. Ding, C.G.: An efficient algorithm for computing quantiles of the noncentral chi-squared distribution. Comput. Stat. Data Anal. 29, 253–259 (1999)

    Article  MATH  Google Scholar 

  6. Frick, H.: AS R84. A remark on Algorithm AS 226, computing noncentral beta probabilities. Appl. Stat. 39, 311–312 (1990)

    Article  Google Scholar 

  7. Guirguis, G.H.: A note on computing the noncentrality parameter of the noncentral F distribution. Commun. Stat. Simul. Comput. 19, 1497–1511 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helstorm, C.W., Ritcey, J.A.: Evaluation of the noncentral F distribution by numerical contour integration. SIAM J. Sci. Stat. Comput. 6(3), 505–514 (1985)

    Article  Google Scholar 

  9. Henrici, P.: Essentials of Numerical Analysis with Pocket Calculator Demonstrations. Wiley, New York (1982)

    Google Scholar 

  10. Johnson, N.L., Leone, F.C.: Statistics and Experimental Design in Engineering and the Physical Sciences, 2nd edn. Wiley, New York (1977)

    Google Scholar 

  11. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  12. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., Rauch, M.: C-XSC. A C++ Class Library for Extended Scientific Computing. Springer, New York (1993)

    Google Scholar 

  13. Knüsel, L., Bablok, B.: Computation of the noncentral gamma distribution. SIAM J. Sci. Comput. 17(5), 1224–1231 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lam, M.L.: Remark AS R95: A remark on Algorithm AS 226: computing non-central beta probabilities. Appl. Stat. 44, 551–552 (1995)

    Article  Google Scholar 

  15. Lenth, R.V.: Computing noncentral beta probabilities. Appl. Stat. 36, 241–244 (1987)

    Article  MATH  Google Scholar 

  16. Lorenzen, T.J., Anderson, V.L.: Design of Experiments. A No-Name Approach. Dekker, New York (1993)

    Google Scholar 

  17. Narula, S.C., Weistroffer, H.R.: Computation of probability and non-centrality parameter of noncentral F distribution. Commun. Stat. Simul. Comput. 15, 871–878 (1986)

    Article  Google Scholar 

  18. Norton, V.: A simple algorithm for computing the noncentral F distribution. Appl. Stat. 32, 84–85 (1983)

    Article  Google Scholar 

  19. Patnaik, P.B.: The non-central χ 2 and F distribution and their applications. Biometrika 36, 202–232 (1949)

    MathSciNet  MATH  Google Scholar 

  20. Posten, H.O.: An effective algorithm for the noncentral beta distribution function. Am. Stat. 47, 129–131 (1993)

    Article  Google Scholar 

  21. Severo, N., Zelen, M.: Normal approximation to the chi-square and noncentral F probability functions. Biometrika 47, 411–416 (1960)

    MathSciNet  MATH  Google Scholar 

  22. Sibuya, M.: On the noncentral beta distribution function (1967). Unpublished manuscript. The equation can be found in the book of Johnson, Kotz, and Balakrishnan (1995), p. 485 (30.12)

  23. Singh, K.P., Relyea, G.E.: Computation of noncentral F probabilities. A computer program. Comput. Stat. Data Anal. 13, 95–102 (1992). The misprint on p. 97 was corrected by Chattamvelli (1995)

    Article  Google Scholar 

  24. Tiku, M.L.: A note on approximating to the noncentral F distribution. Biometrika 53, 606–610 (1966)

    MathSciNet  Google Scholar 

  25. Tiwari, R.C., Yang, J.: Algorithm AS 318: An efficient recursive algorithm for computing the distribution function and non-centrality parameter of the non-central F-distribution. Appl. Stat. 46, 408–413 (1997)

    MATH  Google Scholar 

  26. Wang, M.C., Kennedy, W.J.: A self-validating numerical method for computation of central and non-central F probabilities and percentiles. Stat. Comput. 5, 155–163 (1995)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Baharev.

Additional information

The authors wish to thank Mr. Richárd Király for his preliminary work. The authors are grateful to the Editor and Associate Editor of STCO and the unknown reviewers for their helpful suggestions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baharev, A., Kemény, S. On the computation of the noncentral F and noncentral beta distribution. Stat Comput 18, 333–340 (2008). https://doi.org/10.1007/s11222-008-9061-3

Download citation

Keywords

  • Minimal detectable differences
  • ANOVA
  • Noncentrality parameter
  • Central-F approximations to noncentral F
  • Recursive algorithms
  • Symbolic computation