Statistics and Computing

, Volume 18, Issue 2, pp 125–135

Bayesian inference for a discretely observed stochastic kinetic model

  • R. J. Boys
  • D. J. Wilkinson
  • T. B. L. Kirkwood
Article

Abstract

The ability to infer parameters of gene regulatory networks is emerging as a key problem in systems biology. The biochemical data are intrinsically stochastic and tend to be observed by means of discrete-time sampling systems, which are often limited in their completeness. In this paper we explore how to make Bayesian inference for the kinetic rate constants of regulatory networks, using the stochastic kinetic Lotka-Volterra system as a model. This simple model describes behaviour typical of many biochemical networks which exhibit auto-regulatory behaviour. Various MCMC algorithms are described and their performance evaluated in several data-poor scenarios. An algorithm based on an approximating process is shown to be particularly efficient.

Keywords

Biochemical networks Block updating Lotka-Volterra model Markov jump process MCMC methods Parameter estimation Reversible jump Systems biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Pocketbook of Mathematical Functions. Harri Deutsch, Frankfurt (1984), Chap. 9.6 MATHGoogle Scholar
  2. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 633–648 (1998) Google Scholar
  3. Bahcall, O.G.: Single cell resolution in regulation of gene expression, Mol. Syst. Biol. (2005). doi:10.1038/msb4100020 Google Scholar
  4. Barenco, M., Tomescu, D., Brewer, D., Callard, R., Stark, J., Hubank, M.: Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7, R25 (2006) CrossRefGoogle Scholar
  5. Blackwell, P.G.: Bayesian inference for Markov processes with diffusion and discrete components. Biometrika 90, 613–627 (2003) CrossRefMathSciNetGoogle Scholar
  6. Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001) Google Scholar
  7. Boys, R.J., Giles, P.R.: Bayesian inference for SEIR epidemic models with time-inhomogeneous removal rates. J. Math. Biol. 55, 223–247 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. Brown, K.S., Sethna, J.P.: Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E 68, 021904 (2003) CrossRefGoogle Scholar
  9. Carter, C.K., Kohn, R.: Markov chain Monte Carlo in conditionally Gaussian state space models. Biometrika 83, 589–601 (1996) MATHCrossRefMathSciNetGoogle Scholar
  10. Finch, C.E., Kirkwood, T.B.L.: Chance, Development and Aging. Oxford University Press, New York (2000) Google Scholar
  11. Gibson, G.J., Renshaw, E.: Estimating parameters in stochastic compartmental models using Markov chain methods. IMA J. Math. Appl. Med. Biol. 15, 19–40 (1998) MATHCrossRefGoogle Scholar
  12. Gilioli, G., Pasquali, S., Ruggeri, F.: Bayesian inference for functional response in a stochastic predator-prey system. IBull. Math. Biol. (2008). doi: 10.1007/s11538-007-9256-3 Google Scholar
  13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977) CrossRefGoogle Scholar
  14. Golightly, A., Wilkinson, D.J.: Bayesian sequential inference for stochastic kinetic biochemical network models. J. Comput. Biol. 13(3), 838–851 (2006) CrossRefMathSciNetGoogle Scholar
  15. Golightly, A., Wilkinson, D.J.: Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Stat. Data Anal. 52, 1674–1693 (2008) CrossRefGoogle Scholar
  16. Green, P.J.: Trans-dimensional Markov chain Monte Carlo. In: Green, P.J., Hjørt, N.L., Richardson, S. (eds.) Highly Structured Stochastic Systems, pp. 179–198. Oxford University Press, Oxford (2003) Google Scholar
  17. Guptasarma, P.: Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? BioEssays 17, 987–997 (1995) CrossRefGoogle Scholar
  18. Johnson, N.L., Kotz, S.: Discrete distributions. In: Distributions in Statistics, vol. 1, p. 115. Wiley, New York (1969) Google Scholar
  19. Jost, C., Arditi, R.: Identifying predator-prey processes from time-series. Theor. Pop. Biol. 57, 325–337 (2000) MATHCrossRefGoogle Scholar
  20. Kirkwood, T.B.L., Boys, R.J., Gillespie, C.S., Proctor, C.J., Shanley, D.P., Wilkinson, D.J.: Towards an e-biology of ageing: integrating theory and data. Nat. Rev. Mol. Cell Biol. 4, 243–249 (2003) CrossRefGoogle Scholar
  21. Kitano, H. (ed.): Foundations of Systems Biology. MIT Press, Cambridge (2001) Google Scholar
  22. Liebermeister, W., Klipp, E.: Biochemical networks with uncertain parameters. IEE Syst. Biol. 152(3), 97–107 (2005) CrossRefGoogle Scholar
  23. Liechty, J.C., Roberts, G.O.: Markov chain Monte Carlo methods for switching diffusion models. Biometrika 88, 299–315 (2001) MATHCrossRefMathSciNetGoogle Scholar
  24. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925) MATHGoogle Scholar
  25. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997) CrossRefGoogle Scholar
  26. McAdams, H.H., Arkin, A.: It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–69 (1999) CrossRefGoogle Scholar
  27. Pepperkok, R., Ellenberg, J.: High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006) CrossRefGoogle Scholar
  28. Reinker, S., Altman, R.M., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEE Syst. Biol. 153(4), 168–178 (2006) CrossRefGoogle Scholar
  29. Rempala, G.A., Ramos, K.S., Kalbfleisch, T.: A stochastic model of gene transcription: an application to L1 retrotransposition events. J. Theor. Biol. 242(1), 101–116 (2006) CrossRefMathSciNetGoogle Scholar
  30. Renshaw, E.: Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge (1991) MATHGoogle Scholar
  31. Shen, H., Nelson, G., Nelson, D.E., Kennedy, S., Spiller, D.G., Griffiths, T., Paton, N., Oliver, S.G., White, M.R.H., Kell, D.B.: Automated tracking of gene expression profiles in individual cells and cell compartments. J. R. Soc. Interface 3, 787–794 (2006) CrossRefGoogle Scholar
  32. Shephard, N., Pitt, M.K.: Likelihood analysis of non-Gaussian measurement time series. Biometrika 84(3), 653–667 (1997) MATHCrossRefMathSciNetGoogle Scholar
  33. Tian, T., Xu, S., Gao, J., Burrage, K.: Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics 23, 84–91 (2007) CrossRefGoogle Scholar
  34. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926) CrossRefGoogle Scholar
  35. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton (2006) MATHGoogle Scholar
  36. Wilkinson, D.J., Yeung, S.K.H.: A sparse matrix approach to Bayesian computation in large linear models. Comput. Stat. Data Anal. 44, 493–516 (2004) CrossRefMathSciNetGoogle Scholar
  37. Zheng, Q., Ross, J.: Comparison of deterministic and stochastic kinetics for nonlinear systems. J. Chem. Phys. 94, 3644–3648 (1991) CrossRefGoogle Scholar
  38. Zlokarnik, G., Negulescu, P.A., Knapp, T.E., Mere, L., Burres, N., Feng, L., Whitney, M., Roemer, K., Tsien, R.Y.: Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279, 84–88 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. J. Boys
    • 1
  • D. J. Wilkinson
    • 1
  • T. B. L. Kirkwood
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations