Advertisement

Statistics and Computing

, Volume 18, Issue 1, pp 15–26 | Cite as

Accuracy of edge detection methods with local information in speckled imagery

  • Juliana Gambini
  • Marta E. Mejail
  • Julio Jacobo-Berlles
  • Alejandro C. FreryEmail author
Article

Abstract

We compare the accuracy of five approaches for contour detection in speckled imagery. Some of these methods take advantage of the statistical properties of speckled data, and all of them employ active contours using B-spline curves. Images obtained with coherent illumination are affected by a noise called speckle, which is inherent to the imaging process. These data have been statistically modeled by a multiplicative model using the G0 distribution, under which regions with different degrees of roughness can be characterized by the value of a parameter. We use this information to find boundaries between regions with different textures. We propose and compare five strategies for boundary detection: three based on the data (maximum discontinuity on raw data, fractal dimension and maximum likelihood) and two based on estimates of the roughness parameter (maximum discontinuity and anisotropic smoothed roughness estimates). In order to compare these strategies, a Monte Carlo experience was performed to assess the accuracy of fitting a curve to a region. The probability of finding the correct edge with less than a specified error is estimated and used to compare the techniques. The two best procedures are then compared in terms of their computational cost and, finally, we show that the maximum likelihood approach on the raw data using the G0 law is the best technique.

Keywords

Active contours B-spline curve fitting Image analysis SAR imagery Speckle noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allende, H., Frery, A.C., Galbiati, J., Pizarro, L.: M-estimators with asymmetric influence functions: the GA0 distribution case. J. Stat. Comput. Simul. 76(11), 941–956 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  2. Barndorff-Nielsen, O.E., Blæsild, P.: Hyperbolic distributions. In: Kotz, S., Johnson, N.L. (eds.) Encyclopedia of Statistical Sciences, vol. 3. pp. 700–707. Wiley, New York (1983) Google Scholar
  3. Blackledge, J., Fowler, E.: Fractal dimensions segmentation of Synthetic Aperture Radar images. In: International Conference on Image Processing and its Applications, IEEE, pp. 445–449 (1992) Google Scholar
  4. Blake, A., Isard, M.: Active Contours. Springer, Berlin (1998) Google Scholar
  5. Brigger, P., Hoeg, J., Unser, M.: B-spline snakes: A flexible tool for parametric contour detection. IEEE Trans. Image Process. 9(9), 1484–1496 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bustos, O.H., Lucini, M.M., Frery, A.C.: M-estimators of roughness and scale for GA0-modelled SAR imagery. EURASIP J. Appl. Signal Process. 2002(1), 105–114 (2002) zbMATHCrossRefGoogle Scholar
  7. Chen, S.S., Keller, J.M., Crownover, R.M.: On the calculation of fractal features from images. IEEE Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993) CrossRefGoogle Scholar
  8. Cipolla, R., Blake, A.: The dynamic analysis of apparent contours. In: Proceedings of the 3rd Int. Conf. on Computer Vision, pp. 616–625 (1990) Google Scholar
  9. Cribari-Neto, F., Frery, A.C., Silva, M.F.: Improved estimation of clutter properties in speckled imagery. Comput. Stat. Data Anal. 40(4), 801–824 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. Dennis, T.J., Dessipris, N.G.: Fractal modelling in image texture and analysis. IEE Proc. F 136(5), 227–235 (1989) Google Scholar
  11. Du, G., Yeo, T.S.: A novel multifractal estimation method and its application to remote image segmentation. IEEE Trans. Geosci. Remote Sens. 40, 980–982 (2002) CrossRefGoogle Scholar
  12. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990) zbMATHGoogle Scholar
  13. Figueiredo, M., Leitão, J.: Bayesian estimation of ventricular contours in angiographic images. IEEE Trans. Med. Imaging 11(3), 416–429 (1992) CrossRefGoogle Scholar
  14. Figueiredo, M., Leitão, J., Jain, A.K.: Unsupervised contour representation and estimation using B-splines and minimun description lenght criterion. IEEE Trans. Image Process. 9(6), 1075–1087 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  15. Frery, A.C., Müller, H.-J., Yanasse, C.C.F., Sant’Anna, S.J.S.: A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35(3), 648–659 (1997) CrossRefGoogle Scholar
  16. Frery, A.C., Cribari-Neto, F., Souza, M.O.: Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP J. Appl. Signal Process. 2004, 2476–2491 (2004) zbMATHCrossRefGoogle Scholar
  17. Gambini, J., Mejail, M.E., Jacobo-Berlles, J., Frery, A.C.: Feature extraction in speckled imagery using dynamic B-spline deformable contours under the G0 model. Int. J. Remote Sens. 27(22), 5037–5059 (2006) CrossRefGoogle Scholar
  18. Germain, O., Réfrégier, P.: Edge location in SAR images: performance of the likelihood ratio filter and accuracy improvement with an active contour approach. IEEE Trans. Image Process. 10(1), 72–78 (2001a) zbMATHCrossRefGoogle Scholar
  19. Germain, O., Réfrégier, P.: Statistical active grid for segmentation refinement. Pattern Recognit. Lett. 22(10), 1125–1132 (2001b) zbMATHCrossRefGoogle Scholar
  20. Goodman, J.W.: Some fundamental properties of speckle. J. Opt. Soc. Am. 66, 1145–1150 (1976) Google Scholar
  21. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989) zbMATHGoogle Scholar
  22. Jørgensen, B.: Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics, vol. 9. Springer, New York (1982) zbMATHGoogle Scholar
  23. Keller, T.: Texture description and segmentation through fractal geometry. Comput. Vis. Graph. Image Process. 45, 150–166 (1989) CrossRefGoogle Scholar
  24. Lim, J.S.: Two-dimensional Signal and Image Processing. Prentice Hall Signal Processing Series. Prentice Hall, Englewood Cliffs (1989) Google Scholar
  25. Liu, Y., Li, Y.: Image feature extraction and segmentation using fractal dimension. In: International Conference on Information and Signal Processing, IEEE, pp. 975–979 (1997) Google Scholar
  26. Lucini, M.M., Ruiz, V.F., Frery, A.C., Bustos, O.H.: Robust classification of SAR imagery. In: IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Hong Kong, pp. 557–560 (2003) Google Scholar
  27. Manski, C.F.: Analog Estimation Methods in Econometrics. Monographs on Statistics and Applied Probability, vol. 39. Chapman & Hall, New York (1988), url: http://elsa.berkeley.edu/books/analog.html zbMATHGoogle Scholar
  28. Medioni, G., Yasumoto, Y.: Corner detection and curve representation using curve B-splines. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 764–769 (1986) Google Scholar
  29. Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H.: Approximation of distributions for SAR images: Proposal. evaluation and practical consequences, Lat. Am. Appl. Res. 31, 83–92 (2001) Google Scholar
  30. Mejail, M., Jacobo-Berlles, J., Frery, A.C., Bustos, O.H.: Classification of SAR images using a general and tractable multiplicative model. Int. J. Remote Sens. 24(18), 3565–3582 (2003) CrossRefGoogle Scholar
  31. Oliver, C.J.: Information from SAR images. J. Phys. D: Appl. Phys. 24, 1493–1514 (1991) CrossRefGoogle Scholar
  32. Peitgen, H.O., Saupe, D.: The Science of Fractal Images. Springer, Berlin (1986) Google Scholar
  33. Peli, T.: Multiscale fractal theory and object characterization. J. Opt. Soc. Am. 7(6), 1113–1123 (1990) CrossRefGoogle Scholar
  34. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990) CrossRefGoogle Scholar
  35. Quartulli, M., Datcu, M.: Stochastic geometrical modelling for built-up area understanding from a single SAR intensity image with meter resolution. IEEE Trans. Geosci. Remote Sens. 42(9), 1996–2003 (2004) CrossRefGoogle Scholar
  36. Rogers, D.F., Adams, J.A.: Mathematical Elements for Computer Graphics, 2 edn. McGraw-Hill, New York (1990) Google Scholar
  37. Seshadri, V.: The Inverse Gaussian Distribution: A Case Study in Exponential Families. Claredon Press, Oxford (1993) Google Scholar
  38. Vasconcellos, K.L.P., Frery, A.C., Silva, L.B.: Improving estimation in speckled imagery. Comput. Stat. 20(3), 503–519 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  39. Wang, L.S., Bai, J.: Threshold selection by clustering gray levels of boundary. Pattern Recognit. Lett. 24(12), 1983–1999 (2003) CrossRefMathSciNetGoogle Scholar
  40. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Juliana Gambini
    • 1
  • Marta E. Mejail
    • 1
  • Julio Jacobo-Berlles
    • 1
  • Alejandro C. Frery
    • 2
    Email author
  1. 1.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de ComputaçãoUniversidade Federal de AlagoasMaceióBrazil

Personalised recommendations