Statistics and Computing

, Volume 16, Issue 4, pp 339–354 | Cite as

DRAM: Efficient adaptive MCMC

  • Heikki Haario
  • Marko Laine
  • Antonietta Mira
  • Eero Saksman


We propose to combine two quite powerful ideas that have recently appeared in the Markov chain Monte Carlo literature: adaptive Metropolis samplers and delayed rejection. The ergodicity of the resulting non-Markovian sampler is proved, and the efficiency of the combination is demonstrated with various examples. We present situations where the combination outperforms the original methods: adaptation clearly enhances efficiency of the delayed rejection algorithm in cases where good proposal distributions are not available. Similarly, delayed rejection provides a systematic remedy when the adaptation process has a slow start.


Adaptive Markov chain Monte Carlo Adaptive Metropolis-Hastings Delayed rejection Efficiency ordering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrieu C. and Robert C.P. 2001. Controlled MCMC. Preprint.Google Scholar
  2. Andrieu C. and Moulines E. 2002. On the ergodicity properties of some adaptive MCMC algorithms. To appear in Annals of Applied Probability.Google Scholar
  3. Atchade Y.F. and Rosenthal J.S. 2005. On adaptive Markov chain Monte carlo algorithms. Bernoulli 11(5): 815–282.MATHMathSciNetCrossRefGoogle Scholar
  4. Bowie G.L., Mills W.B., et al. 1985. Rates, constants, and kinetic formulations in surface water modeling. Technical Report EPA/600/3-85/040, U.S. Environmental Agency, ORD, Athens, GA, ERL.Google Scholar
  5. Gelman A.G., Roberts G.O., and Gilks W.R. 1996. Efficient Metropolis jumping rules. In: Bernardo J.M., Berger J.O., David A.F., and Smith A.F.M. (Eds.), Bayesian Statistics V. Oxford University Press, pp. 599–608.Google Scholar
  6. Green, P.J. and Mira, A. 2001 Delayed rejection in reversible jump Metropolis-Hastings. Biometrika 88: 1035–1053.MATHMathSciNetGoogle Scholar
  7. Haario H., Kalachev L., Lehtonen J., and Salmi T. 1999. Asymptotic analysis of chemical reactions. Chem. Eng. Sci. 54: 1131–1143.CrossRefGoogle Scholar
  8. Haario H., Saksman E., and Tamminen J. 1999. Adaptive proposal distribution for random walk Metropolis algorithm. Comp. Stat. 14: 375–395.MATHCrossRefGoogle Scholar
  9. Haario H., Saksman E., and Tamminen J. 2001. An adaptive Metropolis algorithm. Bernoulli 7: 223–242.MATHMathSciNetGoogle Scholar
  10. Haario H., Saksman E., and Tamminen J. 2005. Componentwise adaptation for high dimensional MCMC. Computational Statistics 20(2): 265–274.MATHMathSciNetGoogle Scholar
  11. Malve O., Laine M., Haario H., Kirkkala T., and Sarvala J. Bayesian modeling of algae mass occurrences—using adaptive MCMC methods with a lake water quality model. To appear in Environmental Modelling and Software, 2006.Google Scholar
  12. Mira A. 2001. On Metropolis-Hastings algorithms with delayed rejection. Metron, Vol. LIX, (3–4): 231–241.Google Scholar
  13. Mira A. 2002. Ordering and improving the performance of Monte Carlo Markov Chains. Statistical Science 16: 340–350.MathSciNetCrossRefGoogle Scholar
  14. Peskun P.H. 1973. Optimum Monte Carlo sampling using markov chains. Biometrika 60: 607–612.MATHMathSciNetCrossRefGoogle Scholar
  15. Sokal A.D. 1998. Monte carlo methods in statistical mechanics: Foundations and new algorithms. Cours de Troisième Cycle de la Physique en Suisse Romande. Lausanne.Google Scholar
  16. Tierney L. 1994. Markov chains for exploring posterior distributions. Annals of Statistics 22: 1701–1762.MATHMathSciNetGoogle Scholar
  17. Tierney L. 1998. A note on Metropolis-Hastings kernels for general state spaces. Annals of Applied Probability 8: 1–9.MATHMathSciNetCrossRefGoogle Scholar
  18. Tierney L. and Mira A. 1999. Some adaptive Monte Carlo methods for bayesian inference. Statistics in Medicine 18:2507–2515.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Heikki Haario
    • 1
  • Marko Laine
    • 1
  • Antonietta Mira
    • 2
  • Eero Saksman
    • 3
  1. 1.Lappeenranta University of TechnologyLappeenrantaFinland
  2. 2.University of InsubriaVareseItaly
  3. 3.University of JyväaskyläaJyväaskyläaFinland

Personalised recommendations