Statistics and Computing

, Volume 17, Issue 1, pp 1–10 | Cite as

Confidence bands for Brownian motion and applications to Monte Carlo simulation

  • W. S. Kendall
  • J.-M. Marin
  • C. P. Robert


Minimal area regions are constructed for Brownian paths and perturbed Brownian paths. While the theoretical optimal region cannot be obtained in closed form, we provide practical confidence regions based on numerical approximations and local time arguments. These regions are used to provide informal convergence assessments for both Monte Carlo and Markov Chain Monte Carlo experiments, via the Brownian asymptotic approximation of cumulative sums.


Boundary crossing probability Brownian motion Central limit theorem CUSUM Local time Monte Carlo path Simultaneous confidence region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson T. 1960. A modification of the sequential probability ratio test to reduce the sample size. Ann. Math. Statist. 31(1): 165–197.MathSciNetGoogle Scholar
  2. Billingsley P. 1995. Probability and Measure, 3rd Edn. John Wiley, New York.zbMATHGoogle Scholar
  3. Borodin A. and Salminen P. 2002. Handbook of Brownian Motion - Facts and Formulae, 2 Edn. Birkhauser Verlag.Google Scholar
  4. Corless R., Gonnet G., Hare E., Jeffrey D., and Knuth D. 1996. On the Lambert W function. Adv. Computational Math. 5: 329–359.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Daniels H. 1996. Approximating the first crossing-time density for a curved boundary. Bernoulli 2: 133–143.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Durbin J. 1971 Boundary crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J. Appl. Prob. 8: 431–453.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Durbin J. 1992. The first-passage density of the Brownian motion process to a curved boundary. J. Appl. Prob. 29: 291–304.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Feller W. 1971. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd Edn. John Wiley.Google Scholar
  9. Fishman G.S. 1996. Monte Carlo. Springer Series in Operations Research. Springer-Verlag, New York. Concepts, algorithms, and applications.Google Scholar
  10. Hall W. 1997. The distribution of Brownian motion on linear stopping boundaries. Sequential Anal. 4: 345–352.Google Scholar
  11. Hollander M. and Wolfe D.A. 1999. Nonparametric statistical methods. Wiley Series in Probability and Statistics: Texts and References Section. John Wiley & Sons Inc., New York, 2nd Edn. A Wiley-Interscience Publication.Google Scholar
  12. Lerche H.R. 1986. Boundary Crossing of Brownian Motion. Lecture Notes in Statistics. Springer-Verlag.Google Scholar
  13. Li W.V. 2003. The first exit time of a Brownian motion from an unbounded convex domain. Ann. Prob. 31(2): 1078–1096.zbMATHCrossRefGoogle Scholar
  14. Loader C. and Deely J. 1987. Computations of boundary crossing probabilities for the wiener process. J. Stat. Comp. Simul. 27: 96–105.MathSciNetGoogle Scholar
  15. Novikov A., Frishling V. and Kordzakhia N. 1999. Approximation of boundary crossing probabilities for a Brownian motion. J. Appl. Prob. 36: 1019–1030.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Park C. and Schuurmann F. 1976. Evaluation of barrier crossing probabilities for Wiener path. J. Appl. Prob. 17: 197–201.Google Scholar
  17. Potzelberger K. and Wang L. 2001. Boundary crossing probability for Brownian motion. J. Appl. Prob. 38: 152–164.CrossRefMathSciNetGoogle Scholar
  18. Revuz D. and Yor M. 1999 Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 3rd Edn. Springer-Verlag, Berlin.Google Scholar
  19. Robbins H. and Siegmund D. 1970. Boundary crossing probabilities for the Wiener process and sample sums. Ann. Math. Statist. 41: 1410–1429.MathSciNetGoogle Scholar
  20. Robert C. and Casella G. 2004. Monte Carlo Statistical Methods, 2nd Edn. Springer-Verlag.Google Scholar
  21. Wang L. and Potzelberger K. 1997. Boundary crossing probability for Brownian motion and general boundaries. J. Appl. Prob. 34: 54–65.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • W. S. Kendall
    • 1
  • J.-M. Marin
    • 2
  • C. P. Robert
    • 3
  1. 1.Department of StatisticsUniversity of WarwickCoventryEngland
  2. 2.Projet select,INRIAfuturs,Laboratoire de MathématiquesUniversité d’Orsay (Bât. 425)OrsayFrance
  3. 3.CEREMADEUniversité Paris Dauphine and CREST,INSEEParisFrance

Personalised recommendations