Rotation tests

Abstract

This paper describes a generalised framework for doing Monte Carlo tests in multivariate linear regression. The rotation methodology assumes multivariate normality and is a true generalisation of the classical multivariate tests—any imaginable test statistic is allowed. The generalised test statistics are dependent on the unknown covariance matrix. Rotation testing handles this problem by conditioning on sufficient statistics.

Compared to permutation tests, we replace permutations by proper random rotations. Permutation tests avoid the multinormal assumption, but they are limited to relatively simple models. On the other hand, a rotation test can, in particular, be applied to any multivariate generalisation of the univariate F-test.

As an important application, a detailed description of how each single response p-value can be non-conservatively adjusted for multiplicity is given. This method is exact and non-conservative (unlike Bonferroni), and it is a generalisation of the ordinary F-test (except for the computation by simulations). Hence, this paper offers an exact Monte Carlo solution to a classical problem of multiple testing.

This is a preview of subscription content, log in to check access.

References

  1. Agresti, A. 2001. Exact inference for categorical data: Recent advances and continuing controversies. Statistics in Medicine 20:2709–2722.

    Google Scholar 

  2. Anderson, M.J. 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58:626–639.

    Google Scholar 

  3. Anderson, T.W., Olkin, I., and Underhill, L.G. 1987. Generation of random orthogonal matrices. Siam Journal on Scientific and Statistical Computing 8:625–629.

    Google Scholar 

  4. Cheng, R.C.H. 1985. Generation of multivariate normal samples with given sample mean and covariance matrix. Journal of Statistical Computation and Simulation 21:39–49.

    Google Scholar 

  5. Curtis, M.L. 1979. Matrix Groups. Springer-Verlag, New York.

    Google Scholar 

  6. Dempster, A.P. 1969. Elements of Continuous Multivariate Analysis. Addison-Wesley Reading Mass.

  7. Edgington, E.S. 1995. Randomization Tests, 3rd edition. Marcel Dekker, New York.

    Google Scholar 

  8. Engen, S. and Lillegård, M. 1997. Stochastic simulations conditioned on sufficient statistics. Biometrika 84:235–240.

    Google Scholar 

  9. Fang, K.T. and Anderson, T.W. 1990. Statistical inference in Elliptically Contoured and Related Distributions. Allerton Press, New York.

    Google Scholar 

  10. Fang, K.T., Kotz, S., and Ng, K.W. 1990. Symmetric Multivariate and Related Distributions. Chapman and Hall, New York.

    Google Scholar 

  11. Fang, K.T. and Zhang, Y.T. 1990. Generalized Multivariate Analysis. Springer-Verlag, New York.

    Google Scholar 

  12. Fisher, R.A. 1935. The Design of Experiments, 8th edition 1966. Oliver & Boyd, Edinburgh.

    Google Scholar 

  13. Forsythe, A.B., Engelman, L., Jennrich, R., and May, P.R.A. 1973. A stopping rule for variable selection in multiple regression. Journal of the American Statistical Association 68:75–77.

    Google Scholar 

  14. Ge, Y., Dudoit, S., and Speed, T.P. 2003. Resampling-based multiple testing for microarray data analysis (with discussion). Test 12:1–77.

    Google Scholar 

  15. Genz, A. 1999. Methods for generating random orthogonal matrices. In: Niederreiter H. and Spanier J. (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer-Verlag, Berlin, pp. 199–213.

    Google Scholar 

  16. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gassenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S. 1999. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531–537.

    Article  CAS  PubMed  Google Scholar 

  17. Heiberger, R.M. 1978. Generation of random orthogonal matrices. Applied Statistics 27:199–206.

    Google Scholar 

  18. James, A.T. 1954. Normal multivariate analysis and the orthogonal group. The Annals of Mathematical Statistics 25:40–75.

    Google Scholar 

  19. Langsrud, Ø 2002. 50–50 Multivariate analysis of variance for collinear responses. The Statistician 51:305–317.

    Google Scholar 

  20. Langsrud, Ø. 2004. The geometrical interpretation of statistical tests in multivariate linear regression. Statistical Papers 45:111–122.

    Google Scholar 

  21. Läuter, J., Glimm, E., and Kropf, S. 1996. New multivariate tests for data with an inherent structure. Biometrical Journal 38:5–23.

    Google Scholar 

  22. Läuter, J., Glimm, E., and Kropf, S. 1998. Multivariate tests based on left-spherically distributed linear scores. The Annals of Statistics 26:1972–1988.

    Google Scholar 

  23. Mardia, K.V., Kent, J.T., and Bibby, J.M. 1979. Multivariate Analysis. Academic Press Limited, London.

    Google Scholar 

  24. Miller, A.J. 1984. Selection of subsets of regression variables. Journal of the Royal Statistical Society Series A 147:389–425.

    Google Scholar 

  25. Olson, L. 1976. On choosing a test statistic in multivariate analysis of variance. Psychological Bulletin 83:579–586.

    Google Scholar 

  26. Shaffer, J.P. 1995. Multiple hypothesis testing. Annual Review of Psychology 46:561–584.

    Google Scholar 

  27. Pitman, E.J.G. 1937a. Significance tests which may be applied to samples from any populations. Journal of Royal Statistical Society B 4:119–130.

    Google Scholar 

  28. Pitman, E.J.G. 1937b. Significance tests which may be applied to samples from any populations II: The correlation coefficient. Journal of Royal Statistical Society B 4:225–232.

    Google Scholar 

  29. Pitman, E.J.G. 1938. Significance tests which may be applied to samples from any populations III: The analysis of variance test. Biometrika 29:322–335.

    Google Scholar 

  30. Strang, G. 1988. Linear Algebra and its Applications, 3rd edition. Harcourt Brace Javanovich, San Diego.

    Google Scholar 

  31. Tanner, M.A. and Thisted, R.A. 1982. A remark on AS 127. Generation of random orthogonal matrices. Applied Statistics 31:190–192.

    Google Scholar 

  32. Wedderburn, R.W.M. 1975. Random Rotations and Multivariate Normal Simulation, Research Report, Rothamsted Experimental Station.

  33. Westfall, P.H. and Young, S.S. 1993. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. Wiley, New York.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Øyvind Langsrud.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langsrud, Ø. Rotation tests. Stat Comput 15, 53–60 (2005). https://doi.org/10.1007/s11222-005-4789-5

Download citation

Keywords

  • conditional inference
  • multiple testing
  • random orthogonal matrix
  • adjusted p-value
  • multiple endpoints
  • spherical distribution
  • microarray data analysis