Sensing and Imaging

, 21:2 | Cite as

Design and Simulation of a High Sensitive Surface Plasmon Resonance Biosensor for Detection of Biomolecules

  • Chaity Basak
  • Md. Kamal HosainEmail author
  • Ahsan Ahmed Sazzad
Original Paper


In this paper, a surface plasmon resonance (SPR) biosensor based on black phosphorus (BP)–WSe2 coated metal surface for the detection of biomolecules is designed and simulated. The reported sensor configuration consists of a prism (SF10 glass), ZnO (zinc oxide), gold (Au), WSe2–BP, and sensing medium. The execution parameters including sensitivity, detection accuracy, and quality factor of the proposed sensor are explored at an operating wavelength of 633 nm. The angular interrogation method is used for the reflectance spectra analysis. The overall simulation is performed by COMSOL multiphysics (5.3a). Numerical outcomes demonstrate that the base ZnO layers which have an expansive genuine value of the dielectric constant in a mix with gold, WSe2, and BP are in charge of upgrading the detecting execution of the proposed SPR based biosensor. The reported biosensor achieves maximum sensitivity of 101.5 deg/RIU, the detection accuracy of 1.57 and a quality parameter of 15.62 RIU−1 for a large dynamic range of refractive index differing from 1.33 to 1.43.


Surface plasmon resonance (SPR) Sensitivity Detection accuracy Quality factor ZnO WSe2 



  1. 1.
    Rahman, M. S., Hasan, M. R., Rikta, K. A., & Anower, M. S. (2018). A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Optical Materials, 75, 567–573.CrossRefGoogle Scholar
  2. 2.
    Kretschmann, E., & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 23, 2135–2136.CrossRefGoogle Scholar
  3. 3.
    Agranovich, V. M., & Mills, D. L. (1982). Surface polaritons: Electromagnetic waves at surfaces and interfaces. Amsterdam: North-Holland Publishing Co.Google Scholar
  4. 4.
    Raether, H. (1988). Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics (Vol. 111, pp. 4–39). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  5. 5.
    Bozhevolnyi, S. I. (2007). Nanophotonics with surface plasmons. In V. M. Shalaev & S. Kawata (Eds.), Advances in nano-optics and nano-photonics (pp. 1–34). Elsevier Science.Google Scholar
  6. 6.
    Gwon, H. R., & Lee, S. H. (2010). Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Materials Transactions, 51, 1150–1155.CrossRefGoogle Scholar
  7. 7.
    Quail, J., Rako, J., & Simon, H. (1983). Long-range surface-plasmon modes in silver and aluminum films. Optics Letters, 8, 377–379.CrossRefGoogle Scholar
  8. 8.
    Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 54, 3–15.CrossRefGoogle Scholar
  9. 9.
    Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108, 462–493.CrossRefGoogle Scholar
  10. 10.
    Homola, J., & Piliarik, M. (2006). Surface plasmon resonance (SPR) sensors. In Surface plasmon resonance based sensors (pp. 45–67). Berlin, Heidelberg: Springer.Google Scholar
  11. 11.
    Aksimsek, S., Jussila, H., & Sun, Z. (2018). Graphene–MoS2–metal hybrid structures for plasmonic biosensors. Optics Communications, 428, 233–239.CrossRefGoogle Scholar
  12. 12.
    Maurya, J. B., Prajapati, Y. K., Singh, V., Saini, J. P., & Tripathi, R. (2016). Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Optics Communications, 359, 426–434.CrossRefGoogle Scholar
  13. 13.
    Verma, A., Prakash, A., & Tripathi, R. (2015). Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Optical and Quantum Electronics, 47, 1197–1205.CrossRefGoogle Scholar
  14. 14.
    Verma, A., Prakash, A., & Tripathi, R. (2015). Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Optics communications, 357, 106–112.CrossRefGoogle Scholar
  15. 15.
    Rahman, M. S., Anower, M. S., Hasan, M. R., Hossain, M. B., & Haque, M. I. (2017). Design and numerical analysis of highly sensitive Au–MoS2–graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 396, 36–43.CrossRefGoogle Scholar
  16. 16.
    Tabassum, R., Mishra, S. K., & Gupta, B. D. (2013). Surface plasmon resonance-basedfiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thinfilms. Physical Chemistry Chemical Physics: PCCP, 15, 11868–11874.CrossRefGoogle Scholar
  17. 17.
    Zhu, C., Zeng, Z., Li, H., Li, F., Fan, C., & Zhang, H. (2013). Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. Journal of the American Chemical Society, 135, 5998–6001.CrossRefGoogle Scholar
  18. 18.
    Liao, H., Wen, W., Wong, G. K. L., & Yang, G. (2003). Optical nonlinearity of nanocrystalline Au/ZnO compositefilms. Optics Letters, 28, 1790–1792.CrossRefGoogle Scholar
  19. 19.
    Yu, L., Lee, Y.-H., Ling, X., Santos, E. J. G., Shin, Y. C., Lin, Y., et al. (2014). Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Letters, 14, 3055–3063.CrossRefGoogle Scholar
  20. 20.
    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., & Kis, A. (2013). Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 8, 497–501.CrossRefGoogle Scholar
  21. 21.
    Kumar, S., Sharma, G., & Singh, V. (2015). The performance of surface plasmon resonance sensor in presence of linearly graded film region. Optik, 126, 4111–4114.CrossRefGoogle Scholar
  22. 22.
    Matsui, J., Akamatsu, K., Hara, N., Miyoshi, D., Nawafune, H., Tamaki, K., et al. (2005). SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Analytical Chemistry, 77(13), 4282–4285.CrossRefGoogle Scholar
  23. 23.
    Wu, L., Chu, H., Koh, W., & Li, E. (2010). Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 18, 14395–14400.CrossRefGoogle Scholar
  24. 24.
    Sharma, A., Jha, R., & Gupta, B. (2007). Fiber-opticsensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7, 1118–1129.CrossRefGoogle Scholar
  25. 25.
    Zeng, S., Hu, S., Xia, J., Anderson, T., Dinh, X.-Q., Meng, X.-M., et al. (2015). Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B: Chemical, 207, 801–810.CrossRefGoogle Scholar
  26. 26.
    Maier, S. A. (2007). Plasmonics: fundamentals and applications. New York: Springer.CrossRefGoogle Scholar
  27. 27.
    Wakamatsu, T. (2010). Characteristics of metal enhanced evanescent-wave microcavities. Sensors, 10, 8751–8760.CrossRefGoogle Scholar
  28. 28.
    Sambles, J. R., Bradbery, G. W., & Yang, F. (1991). Optical excitation of surface plasmons: An introduction. Contemporary Physics, 32, 173–183.CrossRefGoogle Scholar
  29. 29.
    Lakowicz, J. R. (2004). Radiative decay engineering 3, “Surface plasmon-coupled directional emission, “ Anal. Biochem., 324, 153–169.Google Scholar
  30. 30.
    Kostruba, A., Ohar, M., Kulyk, B., Zolobko, O., & Stetsyshyn, Y. (2012). Ellipsometric studies of optical properties of copper doped ZnO films on glass substrate. Alloys and Compounds, 518, 96–100.CrossRefGoogle Scholar
  31. 31.
    Kumar, R., Kushwaha, A. S., Srivastava, M., Mishra, H., & Srivastava, S. K. (2018). Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Applied Physics A, 124, 235.CrossRefGoogle Scholar
  32. 32.
    Meshginqalam, B., & Barvestani, J. (2018). Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sensors Journal, 18, 7537–7543.CrossRefGoogle Scholar
  33. 33.
    Hering, K., Cialla, D., Ackermann, K., Dörfer, T., Möller, R., Schneidewind, H., et al. (2008). SERS: a versatile tool in chemical and biochemical diagnostics. Analytical and Bioanalytical Chemistry, 390, 113–124.CrossRefGoogle Scholar
  34. 34.
    Ahad, S. L., Sifat, A. H., & Islam, M. Z. (2015). Performance analysis and optimization of Surface Plasmon Polariton based sensing using Kretschmann–Raether configuration with gold layer. In 2015 annual IEEE India conference (INDICON), New Delhi, 2015, pp. 1–6.Google Scholar
  35. 35.
    Biednov, M., Lebedeva, T., & Shpilovuy, P. (2015). Gold and aluminum based surface plasmon resonance biosensors: sensitivity enhancement. In Optical SENSORS 2015 (Vol. 95061).Google Scholar
  36. 36.
    Ouyang, Q., Zeng, S., Dinh, X.-Q., Coquet, P., & Yong, K.-T. (2016). Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Engineering, 140, 134–139.CrossRefGoogle Scholar
  37. 37.
    Xia, L., Yin, S., Gao, H., Deng, Q., & Du, C. (2011). Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold–silver bimetallic film configuration. Plasmonics, 6, 245–250.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chaity Basak
    • 1
  • Md. Kamal Hosain
    • 1
    Email author
  • Ahsan Ahmed Sazzad
    • 1
  1. 1.Electronics & Telecommunication EngineeringRajshahi University of Engineering & TechnologyRajshahiBangladesh

Personalised recommendations