Advertisement

Sensing and Imaging

, 20:38 | Cite as

Facilitating Displacement of a Micro-scale Liquid Marble Using Electric Fields

  • Mina GhanbariEmail author
  • Ghader Rezazadeh
Original Paper
  • 55 Downloads

Abstract

This paper discusses a novel theoretical treatment for facilitating displacement of a micro-scale liquid marble. It can be beneficial in designing microsensors as liquid-state micro accelerometers. In this work, the marble has been placed on the substrate under which the finger electrodes are located. The marble has been bounded with another rigid plate above it. To overcome the complexities of the marble displacement, initially, it has been deformed utilizing the electric field. This deforming electric field is generated via applying a sufficient DC voltage to the top, and bottom fixed plates. The electrostatic manipulating force exerting on the marble opposes the marble’s gravity, reduces its contact zone area and eventually causes the marble to get spherical form approximately. For displacing the marble, another electric and considerably weaker field than deforming one is applied to the marble via finger electrodes. The displacing electric field, which causes the marble to roll, is created via applying a DC voltage to the finger electrodes underneath the substrate. The displacing potentials are set to be on and off regularly to accelerate the movement of the marble. It has been shown that for a liquid marble with an effective radius of 1 μm, applying the approximate value of 42 V can deform the marble to a spherical, shaped one. It was also indicated that the air friction force exerting on the marble during its displacement leads to the constant-velocity motion of the marble eventually.

Keywords

Liquid marble Electrostatically manipulation Microfluidics 

Notes

Compliance with Ethical Standards

Conflict of interest

All author declare that they have no conflict of interest.

References

  1. 1.
    McHale, G., Shirtcliffe, N. J., Newton, M. I., & Pyatt, F. (2007). Self-organization of hydrophobic soil and granular surfaces. Applied Physics Letters, 90(5), 54110.CrossRefGoogle Scholar
  2. 2.
    McHale, G., & Newton, M. I. (2011). Liquid marbles: principles and applications. Soft Matter, 7(12), 5473–5481.CrossRefGoogle Scholar
  3. 3.
    Mahadevan, L., & Pomeau, Y. (1999). Rolling droplets. Physics of Fluids, 11(9), 2449–2453.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hapgood, K. P., & Khanmohammadi, B. (2009). Granulation of hydrophobic powders. Powder Technology, 189(2), 253–262.CrossRefGoogle Scholar
  5. 5.
    Eshtiaghi, N., Arhatari, B., & Hapgood, K. P. (2009). Producing hollow granules from hydrophobic powders in high-shear mixer granulators. Advanced PowderTechnology, 20(6), 558–566.Google Scholar
  6. 6.
    Eshtiaghi, N., Liu, J. S., Shen, W., & Hapgood, K. P. (2009). Liquid marble formation: Spreading coefficients or kinetic energy. Powder Technology, 196(2), 126–132.CrossRefGoogle Scholar
  7. 7.
    Bhosale, P. S., Panchagnula, M. V., & Stretz, H. A. (2008). Mechanically robust nanoparticle stabilized transparent liquid marbles. Applied Physics Letters, 93(3), 034109.CrossRefGoogle Scholar
  8. 8.
    Eshtiaghi, N., & Hapgood, K. P. (2012). A quantitative framework for the formation of liquid marbles and hollow granules from hydrophobic powders. Powder Technology, 223, 65–76.CrossRefGoogle Scholar
  9. 9.
    Ireland, P. M., Thomas, C. A., Lobel, B. T., Webber, G. B., Fujii, S., & Wanless, E. J. (2018). An electrostatic method for manufacturing liquid marbles and particle stabilized aggregates. Frontiers in Chemistry, 6, 280.CrossRefGoogle Scholar
  10. 10.
    Ireland, P. M., Kido, K., Webber, G. B., Fujii, S., & Wanless, E. J. (2018). Ph-responsive particle-liquid aggregates—Electrostatic formation kinetics. Frontiers in Chemistry, 6, 215.CrossRefGoogle Scholar
  11. 11.
    Zeng, H., & Zhao, Y. (2010). Dynamic behavior of a liquid marble based accelerometer. Applied Physics Letters, 96(11), 114104.CrossRefGoogle Scholar
  12. 12.
    Yang, Z., Halvorsen, E., & Dong, T. (2012). Power generation from conductive droplet sliding on electret film. Applied Physics Letters, 100(21), 213905.CrossRefGoogle Scholar
  13. 13.
    Bormashenko, E., Pogreb, R., Bormashenko, Y., Musin, A., & Stein, T. (2008). New investigations on ferrofluids: Ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir, 24(21), 12119–12122.CrossRefGoogle Scholar
  14. 14.
    Bormashenko, E., Pogreb, R., Stein, T., Whyman, G., Schiffer, M., & Aurbach, D. (2012). Electrically deformable liquid marbles. Journal of Adhesion Science and Technology, 25(12), 1371–1377.CrossRefGoogle Scholar
  15. 15.
    Bormashenko, E., Pogreb, R., Balter, R., Gendelman, O., & Aurbach, D. (2012). Composite non-stick droplets and their actuation with electric field. Applied Physics Letters, 100(15), 151601.CrossRefGoogle Scholar
  16. 16.
    Newton, M. I., Herbertson, D. L., Elliott, S. J., Shirtcliffe, N. J., & McHale, G. (2007). Electrowetting of liquid marbles. Journal of Physics D Applied Physics, 40(1), 20–24.CrossRefGoogle Scholar
  17. 17.
    Bormashenko, E., Pogreb, R., Balter, R., Aharoni, H., Bormashenko, Y., Grynyov, R., et al. (2015). Elastic properties of liquid marbles. Colloid and Polymer Science, 293(8), 2157–2164.CrossRefGoogle Scholar
  18. 18.
    Vallet, M., Berge, B., & Vovelle, L. (1996). Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer, 37(12), 2465–2470.CrossRefGoogle Scholar
  19. 19.
    Ooi, C. H., Jing, J., Nguyen, A. V., Evans, G. M., & Nguyen, N. T. (2018). Picking up and placing a liquid marble using dielectrophoresis. Microfluidics and Nanofluidics, 22, 142.CrossRefGoogle Scholar
  20. 20.
    Khaw, M. K., Ooi, C. H., Yasin, F. M., Nguyen, A. V., Evans, G. M., & Nguyen, N. T. (2017). Dynamic behavior of a magnetically actuated floating liquid marble. Microfluidics and Nanofluidics, 21, 110.CrossRefGoogle Scholar
  21. 21.
    Nguyen, N. T., Zhu, G., Chua, Y. C., Phan, V. N., & Tan, S. H. (2010). Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir, 26(15), 12553–12559.CrossRefGoogle Scholar
  22. 22.
    Nguyen, N. T. (2012). Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics, 12, 1–16.CrossRefGoogle Scholar
  23. 23.
    Nguyen, N. T. (2013). Deformation of ferrofluid marbles in the presence of a permanent magnet. Langmuir, 29(45), 13982–13989.CrossRefGoogle Scholar
  24. 24.
    Zhao, Y., Fang, J., Wang, H., Wang, X., & Lin, T. (2010). Magnetic liquid marbles: Manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Advanced Materials, 22(6), 707–710.CrossRefGoogle Scholar
  25. 25.
    Zhao, Y., Xu, Z., Parhizkar, M., Fang, J., Wang, X., & Lin, T. (2012). Magnetic liquid marbles, their manipulation and application in optical probing. Microfluidics and Nanofluidics, 13(4), 555–564.CrossRefGoogle Scholar
  26. 26.
    Planchette, C., Biance, A.-L., Pitois, O., & Lorenceau, E. (2013). Coalescence of armored interface under impact. Physics of Fluids, 25, 042104.CrossRefGoogle Scholar
  27. 27.
    Bormashenko, E., Balter, R., & Aurbach, D. (2010). Micropump based on liquid marbles. Applied Physics Letters, 97(9), 091908.CrossRefGoogle Scholar
  28. 28.
    Aussillous, P., & Quere, D. (2006). Properties of liquid marbles. Proceeding of the Royal Society A, 462, 973–999.CrossRefGoogle Scholar
  29. 29.
    White, F. M. (2000). Fluid mechanics (7th ed.). New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Engineering Faculty of KhoyUrmia UniversityUrmiaIran
  2. 2.Senior Researcher of Institute of Engineering and TechnologySouth Ural State UniversityChelyabinskRussia

Personalised recommendations