Sensing and Imaging

, 20:28 | Cite as

Analysis of Performance of Howland AC Current Source for Electrical Impedance Spectro-Tomography

  • Reza Ghorbani
  • Manoochehr NahviEmail author
Original Paper


Electrical impedance tomography (EIT) is a technique that is able to deliver valuable information on conductivity distribution in a process. An extension to conventional EIT is electrical impedance spectro-tomography (EIST) which is offering spectroscopic information. Along with methodological advancement of EIST and to meet practical requirements, there are ongoing researches to develop proper high-quality EIST hardware. An important part of EIST hardware is voltage controlled current source which its design is appeared to be a challenging task. This paper addresses briefly the aspects of EIST system and discusses the effect of various factors and their joint impacts on commonly used Howland voltage controlled current sources for EIST application. To perform realistic simulations, practical load and electrode model are applied within sensing bandwidth. The simulation results revealed the considerable impact of resistors tolerance on reducing the output impedance of the current sources in low frequencies while increasing the operating frequency significantly reduces the impact of tolerance. The simulation also demonstrates that the load current relative error is directly proportional to the resistors’ tolerance and its value approaches the ideal state, with zero-tolerance resistors, by increasing operating frequency. This point can be employed to determine the minimum operating frequency in which the impact of resistors tolerance can be canceled. The results imply that by using resistors with a lower tolerance, it is possible to achieve wider bandwidth in EIST. It can also be concluded that dual op-amp Howland current source is a suitable choice for EIST application.


Electrical impedance tomography Electrical impedance spectro-tomography Impedance spectroscopy EIST hardware Voltage controlled current source Howland current source 



Authors would like to express their sincere thanks to anonymous reviewers for their appreciative and constructive comments on the draft of this paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Henderson, R. P., & Webster, J. G. (1978). An impedance camera for spatially specific measurements of the thorax. IEEE Transactions on Biomedical Engineering, 3, 250–254.CrossRefGoogle Scholar
  2. 2.
    Nahvi, M., & Hoyle, B. (2008). Wideband electrical impedance tomography. Measurement Science & Technology, 19(9), 094011.CrossRefGoogle Scholar
  3. 3.
    Silvera-Tawil, D., Rye, D., Soleimani, M., & Velonaki, M. (2015). Electrical impedance tomography for artificial sensitive robotic skin: A review. IEEE Sensors Journal, 15(4), 2001–2016.CrossRefGoogle Scholar
  4. 4.
    Nahvi, M., & Hoyle, B. S. (2009). Electrical impedance spectroscopy sensing for industrial processes. IEEE Sensors Journal, 9(12), 1808–1816.CrossRefGoogle Scholar
  5. 5.
    Baidillah, M. R., Iman, A.-A. S., Sun, Y., & Takei, M. (2017). Electrical impedance spectro-tomography based on dielectric relaxation model. IEEE Sensors Journal, 17(24), 8251–8262.CrossRefGoogle Scholar
  6. 6.
    Nahvi, M., & Hoyle, B. S. (2009). Data fusion for electrical spectro-tomography. IEEE international workshop on imaging systems and techniques (IST 2009) (pp. 229–234).Google Scholar
  7. 7.
    Veal, B., Baldo, P., Paulikas, A., & Eastman, J. (2015). Understanding artifacts in impedance spectroscopy. Journal of the Electrochemical Society, 162(1), 47–57.CrossRefGoogle Scholar
  8. 8.
    Dimas, C., Tsampas, P., Ouzounoglou, N., & Sotiriadis, P. P. (2017). Development of a modular 64-electrodes electrical impedance tomography system. In Proceedings of 6th international conference on modern circuits and systems technologies (MOCAST 2017) (pp. 1–4).Google Scholar
  9. 9.
    Nahvi, M., Hoyle, B. S., & Zhao, Y. (2010). Experimental verification trials for fast spectro-tomography sensing in process reactors. In Proceedings of 6th world congress on industrial process tomography (ISIPT 2010).Google Scholar
  10. 10.
    Brown, B., & Seagar, A. (1987). The Sheffield data collection system. Clinical Physics and Physiological Measurement, 8(4A), 91.CrossRefGoogle Scholar
  11. 11.
    Rivera, D., Gaikwad, S., & Chen, X. (1994). CONTROL-ID: A demonstration prototype for control-relevant identification. In Proceedings of   IEEE American Control Conference (pp. 2055–2059).Google Scholar
  12. 12.
    Nahvi, M., & Hoyle, B. S. (2009). Wideband excitation signals for electrical impedance industrial process tomography. In Proceedings of the 5th international symposium on process tomography, Zakopane, Poland.Google Scholar
  13. 13.
    Sanchez, B., Vandersteen, G., Bragos, R., & Schoukens, J. (2012). Basics of broadband impedance spectroscopy measurements using periodic excitations. Measurement Science & Technology, 23(10), 105501.CrossRefGoogle Scholar
  14. 14.
    Nahvi, M. (2008). Wideband electrical impedance spectro-tomographic imaging. University of Leeds, Leeds, UK.Google Scholar
  15. 15.
    Islam, S. M. M., Reza, M. A. R., & Kiber, M. A. (2013). Development of multi-frequency electrical impedance spectroscopy (EIS) system for early detection of breast cancer. International Journal of Electronics Informations, 2(1), 26–32.Google Scholar
  16. 16.
    Heidari, A., Zanganeh, M., Nahvi, M. & Nihtianov, S. (2013). The impact of resistor mismatches and Op-amp limited GBW on the output impedance of the howland current source for EIT applications. In Proceedings of 13th international scientific conference electronics (ET2013) .Google Scholar
  17. 17.
    Hayt, W. H., Kemmerly, J. E., & Durbin, S. M. (1986). Engineering circuit analysis. New York: McGraw-Hill.Google Scholar
  18. 18.
    Chua, L. O., Desoer, C. A., & Kuh, E. S. (1987). Linear and nonlinear circuits. New York: McGraw-Hill College.zbMATHGoogle Scholar
  19. 19.
    Armstrong, S., & Jennings, D. (2004). Current injection electrodes for electrical impedance tomography. Physiological Measurement, 25(4), 797.CrossRefGoogle Scholar
  20. 20.
    Dickin, F., & Wang, M. (1995). Impedance sensors-conducting system. Process Tomography-Principles, Techniques and Application, 63–84.Google Scholar
  21. 21.
    Denyer, C., Lidgey, F., Zhu, Q., & McLeod, C (1993). High output impedance voltage controlled current source for bio-impedance instrumentation. In Proceedings of 15th IEEE annual international conference of the engineering in medicine and biology society (pp. 1026–1027).Google Scholar
  22. 22.
    Denyer, C., Lidgey, F., Zhu, Q., & McLeod, C. (1994). A high output impedance current source. Physiological Measurement, 15(2A), A79.CrossRefGoogle Scholar
  23. 23.
    Saulnier, G. J., Cook, R., Gisser, D., Goble, J., Hochgraf, C., Isaacson, D., et al. (1991). A high-speed, high-precision electrical impedance tomograph. In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (vol. 13, pp. 5–6).Google Scholar
  24. 24.
    Sheingold, D. (1964). Impedance & admittance transformations using operational amplifiers. Lightning Empiricist, 12(1), 1–8.Google Scholar
  25. 25.
    Ross, A. S., Saulnier, G., Newell, J., & Isaacson, D. (2003). Current source design for electrical impedance tomography. Physiological Measurement, 24(2), 509.CrossRefGoogle Scholar
  26. 26.
    Wilson, A., Milnes, P., Waterworth, A., Smallwood, R., & Brown, B. (2001). Mk3. 5: a modular, multi-frequency successor to the Mk3a EIS/EIT system. Physiological Measurement, 22(1), 49.CrossRefGoogle Scholar
  27. 27.
    Russo, S., Nefti-Meziani, S., Carbonaro, N., & Tognetti, A. (2017). Development of a high-speed current injection and voltage measurement system for electrical impedance tomography-based stretchable sensors. Technologies, 5(3), 48.CrossRefGoogle Scholar
  28. 28.
    Yerworth, R. J., Bayford, R., Brown, B., Milnes, P., Conway, M., & Holder, D. S. (2003). Electrical impedance tomography spectroscopy (EITS) for human head imaging. Physiological Measurement, 24(2), 477.CrossRefGoogle Scholar
  29. 29.
    AnalogDevices. 60 MHz 2000 V/μs Monolithic Operational Amplifier AD844. datasheet.Google Scholar
  30. 30.
    Casas, O., Rosell, J., Bragós, R., Lozano, A., & Riu, P. (1996). A parallel broadband real-time system for electrical impedance tomography. Physiological Measurement, 17(4A), A1.CrossRefGoogle Scholar
  31. 31.
    Wang, M., Ma, Y., Holliday, N., Dai, Y., Williams, R. A., & Lucas, G. (2005). A high-performance EIT system. IEEE Sensors Journal, 5(2), 289–299.CrossRefGoogle Scholar
  32. 32.
    Bragos, R., Rosell, J., & Riu, P. (1994). A wide-band AC-coupled current source for electrical impedance tomography. Physiological Measurement, 15(2A), A91.CrossRefGoogle Scholar
  33. 33.
    Pease, R. A. (2008). A comprehensive study of the Howland current pump. National Semiconductor. January, 29.Google Scholar
  34. 34.
    Wang, W., Brien, M., Gu, D., & Yang, J. A.. (2007). A comprehensive study on current source circuits. In Proceedings of 13th international conference on electrical bioimpedance and the 8th conference on electrical impedance tomography (pp. 213–216).Google Scholar
  35. 35.
    Holder, D. S. (2004). Electrical impedance tomography: methods, history and applications. Cambridge: CRC Press.CrossRefGoogle Scholar
  36. 36.
    Bouchaala, D., Kanoun, O., & Derbel, N. (2016). High accurate and wideband current excitation for bioimpedance health monitoring systems. Measurement, 79, 339–348.CrossRefGoogle Scholar
  37. 37.
    Franco, S. (2015). Design with operational amplifiers and analog integrated circuits. New York: McGraw-Hill.Google Scholar
  38. 38.
    Cole, K. S. (1928). Electric impedance of suspensions of spheres. The Journal of General Physiology, 12(1), 29–36.CrossRefGoogle Scholar
  39. 39.
    Kusche, R., Malhotra, A., Ryschka, M., Ardelt, G., Klimach, P., & Kaufmann, S. (2015). A FPGA-based broadband eit system for complex bioimpedance measurements—Design and performance estimation. Electronics, 4(3), 507–525.CrossRefGoogle Scholar
  40. 40.
    Martinsen, O. G., & Grimnes, S. (2015). Bioimpedance and bioelectricity basics. (3rd ed.), Cambridge: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringUniversity of GuilanGuilanIran

Personalised recommendations