Advertisement

Sensing and Imaging

, 20:15 | Cite as

Neural Network Technique for Electronic Nose Based on High Sensitivity Sensors Array

  • S. KhaldiEmail author
  • Z. Dibi
Original Paper
  • 183 Downloads

Abstract

Electronic Nose, as an artificial olfaction system, has potential applications in environmental monitoring because of its proven ability to recognize and discriminate between a variety of different gases and odors. In this paper, we used a chemical sensor array to develop an electronic nose to detect and identify seven different gases (H2, C2H2, CH4, CH3OCH3, CO, NO2, and NH3). These gas sensors are chosen because of its hierarchical/doped nanostructure characteristics, which give them a very high sensitivity and low response time; we improve the linearity response and temperature dependence using models based on artificial neural networks. We used in Electronic nose a pattern recognition based on artificial neural network, which discriminates qualitatively and quantitatively seven gases and has a fast response.

Keywords

Electronic nose E-nose Gas sensor ANN High sensitivity Fast response 

Notes

References

  1. 1.
    Hwang, S., Kwon, H., Chhajed, S., Byon, J. W., Baik, J. M., Im, J., et al. (2013). A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose. Analyst, 138, 443.  https://doi.org/10.1039/c2an35932d.CrossRefGoogle Scholar
  2. 2.
    Fan, G. K., Wang, Y., Hu, M., Lou, Z. Y., & Li, G. (2011). Synthesis of flower-like nano-SnO2 and a study of its gas sensing response. Measurement Science & Technology, 22, 045203–45204.  https://doi.org/10.1088/0957-0233/22/4/045203.CrossRefGoogle Scholar
  3. 3.
    Khaldi, S., & Dibi, Z. (2016). ANN modeling of electronic nose based on co-doped SnO2 nanofiber sensor. Sensors & Transducers, 200(5), 24–28.Google Scholar
  4. 4.
    Akhtar, K., Haq, I. U., & Malook, K. (2015). Gas sensing properties of semiconducting copper oxide nanospheroids. Powder Technology, 283, 505–511.  https://doi.org/10.1016/j.powtec.2015.06.023.CrossRefGoogle Scholar
  5. 5.
    Su, J., Li, Z., Zhang, Y., Wei, Y., & Wang, X. (2016). N-doped and Cu-doped TiO2-B nanowires with enhanced photoelectrochemical activity. RSC Advances, 6, 16177.CrossRefGoogle Scholar
  6. 6.
    Rani, R., & Sharma, S. (2016). Preparation and characterization of SnO2 nanofibers via electrospinning. Advances in Nanoparticles, 5, 53–59.  https://doi.org/10.4236/anp.2016.51006.CrossRefGoogle Scholar
  7. 7.
    Yin, X., Zhang, L., Tian, F., & Zhang, D. (2016). Temperature modulated gas sensing e-nose system for low-cost and fast detection. IEEE Sensors Journal, 16(2), 464–474.  https://doi.org/10.1109/jsen.2015.2483901.CrossRefGoogle Scholar
  8. 8.
    Khudair, B. H., Jasim, M. M., & Alsaqqar, A. S. (2018). Artificial neural network model for the prediction of groundwater quality. Civil Engineering Journal, 4(12), 2959–2970.  https://doi.org/10.28991/cej-03091212.CrossRefGoogle Scholar
  9. 9.
    Bahrekazemi, S., & Hekmatzadeh, M. (2017). Neuro-simulation tool for enhanced oil recovery screening and reservoir performance prediction. Italian Journal of Science & Engineering, 2, 54–64.  https://doi.org/10.28991/ijse-01111.CrossRefGoogle Scholar
  10. 10.
    Zamanisabzi, H., King, J. P., Dilekli, N., Shoghli, B., & Abudu, S. (2018). Developing an ANN based streamflow forecast model utilizing data-mining techniques to improve reservoir streamflow prediction accuracy: A case study. Civil Engineering Journal, 4(5), 1135–1156.  https://doi.org/10.28991/cej-0309163.CrossRefGoogle Scholar
  11. 11.
    Lee, J.-H. (2009). Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensors and Actuators B, 140, 319–336.  https://doi.org/10.1016/j.snb.2009.04.026.CrossRefGoogle Scholar
  12. 12.
    Khaldi, S., & Dibi, Z. (2017). Neural network modeling of smart nanostructure sensor for electronic nose application. In Proceedings of the 6th international conference on systems and control (ICSC), University of Batna 2, Batna, Algeria, May 7–9, 2017.  https://doi.org/10.1109/icosc.2017.7958690.
  13. 13.
    Huang, J., & Wan, Q. (2009). Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors, 9, 9903–9924.  https://doi.org/10.3390/s91209903.CrossRefGoogle Scholar
  14. 14.
    Liu, L., Guo, C., Li, S., Wang, L., Dong, Q., & Li, W. (2010). Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sensors and Actuators B, 150, 806–810.  https://doi.org/10.1016/j.snb.2010.07.022.CrossRefGoogle Scholar
  15. 15.
    Liu, L., Li, S., Zhuang, J., Wang, L., Zhang, J., Li, H., et al. (2011). Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sensors and Actuators B, 155, 782–788.  https://doi.org/10.1016/j.snb.2011.01.047.CrossRefGoogle Scholar
  16. 16.
    Wang, X., Zhao, M., Liu, F., Jia, J., Li, X., & Cao, L. (2013). C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers. Ceramics International, 39, 2883–2887.  https://doi.org/10.1016/j.ceramint.2012.09.062.CrossRefGoogle Scholar
  17. 17.
    Prasad, A. K., Amirthapandian, S., Dharaa, S., Dasha, S., Muralib, N., & Tyagi, A. K. (2014). Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature. Sensors and Actuators B, 191, 252–256.  https://doi.org/10.1016/j.snb.2013.09.102.CrossRefGoogle Scholar
  18. 18.
    Li, C., Lv, M., Zuo, J., & Huang, X. (2015). SnO2 highly sensitive CO gas sensor based on quasi-molecular imprinting mechanism design. Sensors, 15, 3789–3800.  https://doi.org/10.3390/s150203789.CrossRefGoogle Scholar
  19. 19.
    Gao, L., Cheng, Z., Xiang, Q., Zhang, Y., & Xu, J. (2015). Porous corundum-type In2O3 nanosheets: Synthesis and NO2 sensing properties. Sensors and Actuators B, 208, 436–443.  https://doi.org/10.1016/j.snb.2014.11.053.CrossRefGoogle Scholar
  20. 20.
    Yamazoe, N., Fuchigami, J., Kishikawa, M., & Seiyama, T. (1979). Interactions of tin oxide surface with O2, H2O and H2. Surface Science, 86, 335–344.  https://doi.org/10.1016/0039-6028(79)90411-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Electronic Laboratory, Electronic DepartmentBatna UniversityBatnaAlgeria

Personalised recommendations