Advertisement

Sensing and Imaging

, 19:28 | Cite as

Investigation on Structural, Morphological, Optical and Ammonia Sensing Properties Indium Doped Nano Crystalline ZnO Thin Films Synthesized by Spray Pyrolysis Technique

  • M. Rajendra Prasad
  • M. HarisEmail author
  • M. Sridharan
Original Paper
  • 66 Downloads

Abstract

In the present work, nanostructured In doped ZnO thin films were synthesized using spray pyrolysis technique with different molarity concentrations (0.001–0.004). X-ray diffraction patterns confirms the polycrystalline nature of the films with hexagonal structure. The crystallite size is going to be increases with increase in dopant concentration. The field-emission scanning electron micrograph of undoped ZnO exhibits spherical shaped particles with intergrain pores and the intergrain pores decreases with increases in indium concentration. The transmittance and band gap is going to be decreases with increase in indium concentration. The ammonia (NH3) sensing properties of the undoped ZnO and In doped ZnO thin films were carried out at room temperature and the sensing responses of the samples towards NH3 concentrations were reported.

Keywords

ZnO Indium Spray pyrolysis Band gap properties NH3 sensing 

Notes

Acknowledgements

Authors wish to acknowledge to Department of Nano Science and Technology, Karunya University, Coimbatore to provide XRD & UV. The author also wishes to express their sincere thanks to Coimbatore Institute of Technology, Coimbatore and SASTRA University, Thanjavur to provide FE-SEM, EDX and Sensor facilities. One of the authors, MS sincerely thanks the Defence Research Development Organization, Govt. India for the financial support (Grant: 0903810-1229).

References

  1. 1.
    Maldonado, A., de la Luz Olvera, M., Tirado-Guerra, S., & Asomoza, R. (2004). Indium-doped zinc oxide thin films deposited by chemical spray starting from zinc acetylacetonate: effect of the alcohol and substrate temperature. Solar Energy Materials and Solar Cells, 82, 75.CrossRefGoogle Scholar
  2. 2.
    Lucio-López, M. A., Maldonado, A., Castanedo-Pérez, R., Torres-Delgado, G., & de la Luz Olvera, M. (2006). Thickness dependence of ZnO: In thin films doped with different indium compounds and deposited by chemical spray. Solar Energy Materials and Solar Cells, 90, 2362–2376.CrossRefGoogle Scholar
  3. 3.
    Torres Delgado, G., Zúnîga Romero, C. I., Mayén Hernández, S. A., Castanedo Pérez, R., & Zelaya Angel, O. (2009). Optical and structural properties of the sol–gel-prepared ZnO thin films and their effect on the photocatalytic activity. Solar Energy Materials and Solar Cells, 93, 55–59.CrossRefGoogle Scholar
  4. 4.
    Zitouni, K., Kadri, A., Lefebvre, P., & Gil, B. (2006). kP energy-band structure of ZnO/Zn1−xMgxO quantum well heterostructures. Superlattices and Microstructures, 39, 91–96.CrossRefGoogle Scholar
  5. 5.
    Bretagnon, T., Lefebvre, P., Valvin, P., Gil, B., Morhain, C., & Tang, X. (2006). Time resolved photoluminescence study of ZnO/(Zn, Mg)O quantum wells. Journal of Crystal Growth, 287, 12–15.CrossRefGoogle Scholar
  6. 6.
    Bahadur, L., Hamdani, M., Koenig, J. F., & Chartier, P. (1986). Studies on semiconducting thin films prepared by the spray pyrolysis technique for photoelectrochemical solar cell applications: preparation and properties of ZnO. Solar Energy Materials, 14, 107–120.CrossRefGoogle Scholar
  7. 7.
    Wong, L. M., Chiam, S. Y., Huang, J. Q., Wang, S. J., Chim, W. K., & Pan, J. S. (2011). Examining the Tansparency of gallium-doped zinc oxide for photovoltaic applications. Solar Energy Materials and Solar Cells, 95, 2400–2406.CrossRefGoogle Scholar
  8. 8.
    Sahu, D. R., & Huang, J. L. (2009). Development of ZnO-based transparent conductive coatings. Solar Energy Materials and Solar Cells, 93, 1923–1927.CrossRefGoogle Scholar
  9. 9.
    Marotti, R. E., Guerra, D. N., Bello, C., & Machado, G. (2004). 150 E.A. Dalchiele, Band gap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Solar Energy Materials and Solar Cells, 82, 85–103.CrossRefGoogle Scholar
  10. 10.
    Benharrats, F., Zitouni, K., Kadri, A., & Gil, B. (2010). Determination of piezoelectric and spontaneous polarization fields in CdxZn1–xO/ZnO quantum wells grown along the polar (0001) direction. Superlattices and Microstructures, 47, 592–596.CrossRefGoogle Scholar
  11. 11.
    Wang, X., Zhang, J., Zhu, Z., & Zhu, J. (2006). Effect of Pd2+doping on ZnO nanotetrapods ammonia sensor. Colloids and Surfaces A: Physicochemical and EngineeringAspects, 276, 59.CrossRefGoogle Scholar
  12. 12.
    Kim, D., Yun, I., & Kim, H. (2010). Fabrication of rough Al doped ZnO films deposited below pressure chemical vapor deposition for high efficiency thin film solar cells. Current Applied Physics, 10, S459.CrossRefGoogle Scholar
  13. 13.
    Shinde, V. R., Gujar, T. P., Lokhande, C. D., Mane, R. S., & Han, S.-H. (2007). Use of chem-ically synthesized ZnO thin film as a liquefied petroleum gas sensor. Materials Science and Engineering B, 137, 119.CrossRefGoogle Scholar
  14. 14.
    Yanfeng, G., & Masayuki, N. (2006). Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells. Langmuir, 22, 3936–3940.CrossRefGoogle Scholar
  15. 15.
    Oh, B. Y., Jeong, M. C., & Myoung, J. M. (2007). Stabilization in electrical characteristics of hydrogen-annealed ZnO: Al films. Applied Surface Science, 253, 7157–7161.CrossRefGoogle Scholar
  16. 16.
    Yamada, A., Sang, B., & Konagai, M. (1997). Atomic layer deposition of ZnO transparent conducting oxides. Applied Surface Science, 112, 216–222.CrossRefGoogle Scholar
  17. 17.
    Cheng, H. C., Chen, C. F., & Tsay, C. Y. (2007). Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method. Applied Physics Letters, 90, 012113–012116.CrossRefGoogle Scholar
  18. 18.
    Krunks, M., Katerski, A., Dedova, T., Acik, I. O., & Mere, A. (2008). Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Solar Energy Materials and Solar Cells, 92, 1016–1019.CrossRefGoogle Scholar
  19. 19.
    Timmer, B., Olthuis, W., & van den Berg, A. (2005). Ammonia sensors and their applications—a review. Sensors & Actuators B: Chemical, 107, 666.CrossRefGoogle Scholar
  20. 20.
    Pearson, J., & Stewart, G. R. (1993). The deposition of atmospheric ammonia and its effects on plants. New Phytologist, 125, 283.CrossRefGoogle Scholar
  21. 21.
    Cao, W., & Duan, Y. (2005). Optical fiber-based evanescent ammonia sensor. Sensors & Actuators B: Chemical, 110, 252.CrossRefGoogle Scholar
  22. 22.
    Korotcenkov, G. (2007). Metal oxide for solid-state gas sensors: What determines our choice? Materials Science and Engineering B, 139, 1–23.CrossRefGoogle Scholar
  23. 23.
    Yamazoe, N., Sakai, G., & Shimanoe, K. (2003). Oxide semiconductor gas sensors. Catalysis Surveys from Asia, 7, 63–64.CrossRefGoogle Scholar
  24. 24.
    Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal oxide gas sensors: sensitivity and influencing factors. Sensors, 10, 2088–2106.CrossRefGoogle Scholar
  25. 25.
    Joint Committee Powder Diffraction Standard, JCPDS, 36–1451.Google Scholar
  26. 26.
    Lee, J.-B., Lee, H.-J., Seo, S.-H., & Park, J.-S. (2001). Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films, 398/399, 641.CrossRefGoogle Scholar
  27. 27.
    Sivalingam, D., Gopalakrishnan, J. B., & Balaguru, J. B. (2011). Rayappan, Influence of pre-cursor concentration on structural, morphological and electrical properties of spray deposited ZnO thin films. Crystal Research and Technology, 46, 685–690.CrossRefGoogle Scholar
  28. 28.
    Lee, H. J., Lee, J. A., Lee, J. H., Heo, Y. W., Kim, J. J., Park, S. K., et al. (2012). Optical band gap modulation by Mg-doping in In2O3(ZnO)3 ceramics. Ceramic International, 38, 6693–6697.CrossRefGoogle Scholar
  29. 29.
    Li, F., Liu, C., Ma, Z., & Zhao, L. (2012). New methods for determining the band gap behavior of ZnO. Optical Materials, 34, 1062–1066.CrossRefGoogle Scholar
  30. 30.
    Rajendra Prasad, M., Haris, M., & Sridharan, M. (2017). Structural, optical and ammonia sensing properties of nanostructured ZnO thin films deposited by spray pyrolysis technique. Journal of Materials Science: Materials in Electronics.  https://doi.org/10.1007/s10854-017-6930-6.CrossRefGoogle Scholar
  31. 31.
    Sivalingam, D., Jeyaprakash, B. G., & John Bosco Balaguru, R. (2011). Influence of precursor concentration on structural, morphological and electrical properties of spray deposited ZnO thin films. Crystal Research and Technology, 46, 685.CrossRefGoogle Scholar
  32. 32.
    Ganesh Kumar, M., & Rayappan, J. B. B. (2013). A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B: Chem., 183, 459–466.CrossRefGoogle Scholar
  33. 33.
    Patil, D. R., Patil, L. A., & Patil, P. P. (2007). Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sensors & Actuators B: Chemical, 126, 368–374.CrossRefGoogle Scholar
  34. 34.
    Mani, G. K., & Rayappan, J. B. B. (2014). Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Applied Surface Science, 311, 405–412.CrossRefGoogle Scholar
  35. 35.
    Lupan, O., Shishiyanu, S. T., & Shishiyanu, T. S. (2007). Nitrogen oxides and ammonia sensing characteristics of SILAR deposited ZnO thin film. Superlattices and Microstructures, 42, 375.CrossRefGoogle Scholar
  36. 36.
    Kaur Bal, A., Singh, A., & Bedi, R. K. (2011). Characterization and ammonia sensing properties of pure andámodified ZnO films. Applied Physics A, 103, 497–503.CrossRefGoogle Scholar
  37. 37.
    Trivikrama Rao, G. S., & Tarakarama Rao, D. (1999). Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sensors & Actuators B: Chemical, 55, 166.CrossRefGoogle Scholar
  38. 38.
    Patil, S. L., Chougule, M. A., Pawar, S. G., Sen, S., Moholkar, A. V., Kim, J. H., et al. (2011). Fabrication of polyaniline-ZnO nanocomposite gas sensor. Sensors and Transducers, 134, 120.Google Scholar
  39. 39.
    Tulliani, J. M., Cavalieri, A., Musso, S., Sardella, E., & Geobaldo, F. (2011). Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sensors & Actuators B: Chemical, 152, 144.CrossRefGoogle Scholar
  40. 40.
    Dhivya, P., & Sriddharan, M. (2014). Nanostructured ZnO films for room temperature ammonia sensing. Journal of Electronic Materials, 43, 3211.CrossRefGoogle Scholar
  41. 41.
    Shingange, K., Tshabalala, Z. P., Ntwaeaborwa, O. M., Motaung, D. E., & Mhlongo, G. H. (2016). OD to 3D ZnO nanostructures and their luminescence, magnetic and sensing properties: Influence of pH and annealing. Journal of Colloid and Interface Science, 16, 30411–30418.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsKarunya Institute of Technology and Sciences, Deemed to be UniversityCoimbatoreIndia
  2. 2.Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics EngineeringSASTRA, Deemed to be UniversityThanjavurIndia

Personalised recommendations