Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis

  • 135 Accesses

  • 3 Citations

Abstract

A new pixel is designed with the capability of imaging and energy harvesting for the retinal prosthesis implant in 0.18 µm standard Complementary Metal Oxide Semiconductor technology. The pixel conversion gain and dynamic range, are 2.05 \(\upmu{\text{V}}/{\text{e}}^{ - }\) and 63.2 dB. The power consumption 53.12 pW per pixel while energy harvesting performance is 3.87 nW in 60 klx of illuminance per pixel. These results have been obtained using post layout simulation. In the proposed pixel structure, the high power production capability in energy harvesting mode covers the demanded energy by using all available p-n junction photo generated currents.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Loudin, J. D., Cogan, S. F., Mathieson, K., Sher, A., & Palanker, D. V. (2011). Photodiode circuits for retinal prostheses. IEEE Transactions on Biomedical Circuits and Systems, 5(5), 468–480.

  2. 2.

    Wang, L., Mathieson, K., Kamins, T. I., Loudin, J. D., Galambos, L., Goetz, G., et al. (2012). Photovoltaic retinal prosthesis: implant fabrication and performance. Journal of Neural Engineering, 9(4), 046014.

  3. 3.

    Mathieson, K., Loudin, J., Goetz, G., Huie, P., Wang, L., Kamins, T. I., et al. (2012). Photovoltaic retinal prosthesis with high pixel density. Nature Photonics, 6(6), 391–397.

  4. 4.

    Chen, K., Lo, Y.-K., Yang, Z., Weiland, J. D., Humayun, M. S., & Liu, W. (2013). A system verification platform for high-density epiretinal prostheses. IEEE Transactions on Biomedical Circuits and Systems, 7(3), 326–337.

  5. 5.

    Tran, N., Bai, S., Yang, J., Chun, H., Kavehei, O., Yang, Y., et al. (2014). A complete 256-electrode retinal prosthesis chip. IEEE Journal of Solid-State Circuits, 49(3), 751–765.

  6. 6.

    Ghormishi, M. H., & Karami, M. A. (2015). Design and optimization of backside illuminated image sensor for epiretinal implants. Computers and Electrical Engineering, 45, 352–358.

  7. 7.

    Furumiya, M., Ohkubo, H., Muramatsu, Y., Kurosawa, S., Okamoto, F., Fujimoto, Y., et al. (2001). High-sensitivity and no-crosstalk pixel technology for embedded CMOS image sensor. IEEE Transactions on Electron Devices, 48(10), 2221–2227.

  8. 8.

    Ay, S. U. (2011). A CMOS energy harvesting and imaging (EHI) active pixel sensor (APS) imager for retinal prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 535–545.

  9. 9.

    Cevik, I., & Ay, S. U. (2015). An ultra-low power energy harvesting and imaging (EHI) type CMOS APS imager with self-power capability. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(9), 2177–2186.

  10. 10.

    Cevik, I., Huang, X., Yu, H., Yan, M., & Ay, S. U. (2015). An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability. Sensors, 15(3), 5531–5554.

  11. 11.

    Law, M. K., Bermak, A., & Shi, C. (2011). A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(2), 80–84.

  12. 12.

    Tang, F., & Bermak, A. (2012). An 84 pW/Frame per pixel current-mode CMOS image sensor with energy harvesting capability. IEEE Sensors Journal, 12(4), 720–726.

  13. 13.

    Fish, A., Hamami, S., & Yadid-Pecht, O. (2006). CMOS image sensors with self-powered generation capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(11), 1210–1214.

  14. 14.

    Kyung, C.-M. (2016). Theory and applications of smart cameras. Berlin: Springer.

  15. 15.

    Darmont, A., & Society of Photo-optical Instrumentation Engineers. (2012). High dynamic range imaging: Sensors and architectures. SPIE.

  16. 16.

    Beecken, B., & Fossum, E. (1996). Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays. Applied Optics, 35(19), 3471–3477.

  17. 17.

    Loukianova, N. V., Folkerts, H. O., Maas, J. P., Verbugt, D. W., Mierop, A. J., Hoekstra, W., et al. (2003). Leakage current modeling of test structures for characterization of dark current in CMOS image sensors. IEEE Transactions on Electron Devices, 50(1), 77–83.

  18. 18.

    Atlas, D. S. (2005). Atlas user’s manual. Santa Clara, CA: Silvaco International Software.

  19. 19.

    Ay, S. U. (2005). Electrical property modelling of photodiode type CMOS active pixel sensor (APS). In 48th Midwest symposium on circuits and systems, 2005 (pp. 371–375). IEEE.

  20. 20.

    El Gamal, A., & Eltoukhy, H. (2005). CMOS image sensors. IEEE Circuits and Devices Magazine, 21(3), 6–20.

  21. 21.

    Mesgarani, A., Alam, M. N., Nelson, F. Z., & Ay, S. U. (2010). Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS. In 2010 53rd IEEE international midwest symposium on circuits and systems, 2010 (pp. 893–896). IEEE.

  22. 22.

    Ay, S. U. (2011). Boosted readout for CMOS APS pixels. In 2011 IEEE international symposium of circuits and systems (ISCAS), 2011 (pp. 2205–2208). IEEE.

  23. 23.

    Ay, S. U. (2013). Boosted CMOS APS pixel readout for ultra low-voltage and low-power operation. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(6), 341–345.

  24. 24.

    Belbachir, A. N. (2010). Smart cameras (Vol. 2). Berlin: Springer.

  25. 25.

    Mendis, S. K., Kemeny, S. E., & Fossum, E. R. (1993). A 128/spl times/128 CMOS active pixel image sensor for highly integrated imaging systems. In Electron devices meeting, 1993. IEDM’93. Technical Digest., International (pp. 583–586). IEEE.

Download references

Acknowledgements

Funding was provided by Iran University of Science and Technology.

Author information

Correspondence to Iman Ansaripour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ansaripour, I., Karami, M.A. Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis. Sens Imaging 18, 18 (2017). https://doi.org/10.1007/s11220-017-0171-x

Download citation

Keywords

  • Image sensor
  • Energy harvesting
  • Implantable retinal prosthesis