Advertisement

Sensing and Imaging

, 18:22 | Cite as

Investigation of Annealing Temperature on Structural and Morphological Properties of Cr2O3 Nanoparticles for Humidity Sensor Application

  • P. Jayamurugan
  • R. Mariappan
  • K. Premnazeer
  • S. Ashokan
  • Y. V. Subba Rao
  • N. V. S. S. Seshagiri Rao
  • C. Shanmugapriya
Original Paper
  • 158 Downloads

Abstract

Cr2O3 nanoparticles have been prepared for precipitation technique at reaction temperature 50 °C. The prepared samples were annealed different temperatures at 500,700 and 1000 °C. Synthesized powders were characterized as X-ray diffraction, optical, transmission electron microscope, SEM with EDAX, humidity sensor, FTIR. The annealing temperature has been found to be playing a crucial role in the controlling particle size. XRD study shows the rhombohedral crystal structure of highly preferential orientation along (1 0 4) direction. FTIR reveals that the presence Cr–O bonds in the structure. The TEM images show that the size of NPs of Cr2O3 varied from 26 to 60 nm with average crystalline size 43 nm. UV–visible spectrum shows the absorption band of Cr2O3 nanoparticles at 400 nm. The humidity sensor of the Cr2O3 nanoparticles was studied by two temperature method. 1000 °C annealed Cr2O3 nanoparticles show better sensing properties and exhibits good linearity in response than 500 °C. SEM images show the clusters and agglomeration of nanoparticles. EDAX spectrum confirms the presence of Cr2O3 nanoparticles. Each samples have been characterized as sensing materials to determine relative humidity in the range of 20–90%. The humidity sensing property increased with increasing of annealing temperature and the resistance was decreased.

Keywords

Chromium oxide nano particles Effect of annealing temperature TEM Humidity sensor X-ray diffraction SEM with EDAX 

Notes

Acknowledgements

The authors are thankful to sophisticated test and instrumentation center, Cochin (Kerala) and Alagappa University, Karaikudi, Tamil Nadu for providing instrumental facilities.

References

  1. 1.
    Suryawanshi, D. N., Patil, D. R., & Patil, L. A. (2008). Fe2O3-activated Cr2O3 thick films as temperature dependent gas sensors. Sensors and Actuators B: Chemical, 134, 579–584.CrossRefGoogle Scholar
  2. 2.
    Chabanis, G., Parkin, I. P., & Williams, D. E. (2001). Microspheres of the gas sensor material Cr2–xTixO3 prepared by the sol–emulsion–gel route. Journal of Materials Chemistry, 11, 1651–1655.CrossRefGoogle Scholar
  3. 3.
    An, G., Zhang, Y., Liu, Z., Miao, Z., Han, B., Miao, S., et al. (2008). Preparation of porous chromium oxide nanotubes using carbon nanotubes as templates and their application as an ethanol sensor. Nanotechnology, 19, 035504.CrossRefGoogle Scholar
  4. 4.
    Singh, R. C., Kohli, N., Singh, M. P., & Singh, O. (2010). Ethanol and LPG sensing characteristics of SnO2 activated Cr2O3 thick film sensor. Bulletin of Materials Science, 33, 575–579.CrossRefGoogle Scholar
  5. 5.
    Weckhuysen, B. M., & Schoonheydt, R. A. (1999). Alkane dehydrogenation over supported chromium oxide catalysts. Catalysis Today, 51, 223–232.CrossRefGoogle Scholar
  6. 6.
    Ku, R. C., & Winterbottom, W. L. (1985). Electrical conductivity in sputter-deposited chromium oxide coatings. Thin Solid Films, 127, 241–256.CrossRefGoogle Scholar
  7. 7.
    Miremadi, B. K., Singh, R. C., Chen, Z., Morrison, S. R., & Colbow, K. (1994). Chromium oxide gas sensors for the detection of hydrogen, oxygen and nitrogen oxide. Sensors and Actuators B: Chemical, 21, 1–4.CrossRefGoogle Scholar
  8. 8.
    Takeda, Y., Kanno, R., Tsuji, Y., Yamamoto, O., & Taguch, H. (1983). Chromium oxides as cathodes for lithium cells. Journal of Power Sources, 9, 325–328.CrossRefGoogle Scholar
  9. 9.
    Schoonman, J., & Kiliaan, H. S. (1983). In-situ storage of solar hydrogen in a PEC cell. Solid State Ionics, 9–10, 1087–1092.CrossRefGoogle Scholar
  10. 10.
    Miura, N., Kato, H., Yamazoe, N., & Seiyama, T. (1983). An improved type of proton conductor sensor sensitive to H2 and CO at room temperature. Chemistry Letters, 10, 1573–1576.CrossRefGoogle Scholar
  11. 11.
    Gauthier, M., & Chamberland, A. (1977). Solid‐state detectors for the potentiometric determination of gaseous oxides I. Measurement in air. Journal of the Electrochemical Society, 124, 1579–1583.CrossRefGoogle Scholar
  12. 12.
    Lu, G., Miura, N., & Yamazoe, N. (2000). Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2. Sensors and Actuators B: Chemical, 65, 125–127.CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Zhou, X., & Sorensen, O. T. (2000). Oxygen sensors based on semiconducting metal oxides: An overview. Sensors and Actuators B: Chemical, 65, 2–4.CrossRefGoogle Scholar
  14. 14.
    Deniard-Courant, S., Piffard, Y., Barbour, P., & Linage, J. (1988). Relative humidity influence on the water content and on the protonic conductivity of the phosphatoantimonic acids HnSbnP2O3n + 5, xH2O (n = 1, 3, 5). Solid State Ionics, 27, 189–194.CrossRefGoogle Scholar
  15. 15.
    Chandra, S., & Hashmi, S. A. (1990). Humidity sensor using a proton conductor ammonium paratungstate pentahydrate (APT·5H2O). Solid State Ionics, 40–41, 460–462.CrossRefGoogle Scholar
  16. 16.
    Iwahara, H., Uchida, H., & Kondo, J. (1983). Galvanic cell-type humidity sensor using high temperature-type proton conductive solid electrolyte. Journal of Applied Electrochemistry, 13, 365–370.CrossRefGoogle Scholar
  17. 17.
    Miyazaki, K., Xu, C. N., & Haeda, M. (1994). A new potential‐type humidity sensor using EMD‐based manganese oxides as a solid electrolyte. Journal of the Electrochemical Society, 141, L35.CrossRefGoogle Scholar
  18. 18.
    Park, S., & King, J. (2001). One-bodied humidity and temperature sensor having advanced linearity at low and high relative humidity range. Sensors and Actuators B: Chemical, 76, 322–326.CrossRefGoogle Scholar
  19. 19.
    Ramaprasad, A. T., & Rao, V. (2010). Chitin–polyaniline blend as humidity sensor. Sensors and Actuators B: Chemical, B148, 117–125.CrossRefGoogle Scholar
  20. 20.
    Kulkarni, M. V., & Viswanath, A. K. (2005). Spectroscopic, thermal and electrical properties of sulphonic acids doped poly (o-anisidine) and their application as humidity sensor. Sensors and Actuators B: Chemical, 107, 791–797.CrossRefGoogle Scholar
  21. 21.
    Rama, S., & Avadhesh Kumar, Y. (2011). Synthesis and humidity sensing investigations of nanostructured ZnSnO3. Journal of Sensor Technology, 1, 116–124.CrossRefGoogle Scholar
  22. 22.
    Sangeetha, S., Basha, R., Sreerama, K. J., Sangilimuthu, S. N., & Nair, B. U. (2012). Functional pigments from chromium (III) oxide nanoparticles. Dyes and Pigments, 94, 548–552.CrossRefGoogle Scholar
  23. 23.
    Henderson, M. A. (2010). Photochemistry of methyl bromide on the α-Cr2O3 (0001) surface. Surface Science, 604, 1800–1807.CrossRefGoogle Scholar
  24. 24.
    Rakesh, Ananda, S., & Gowda, N. M. M. (2013). Synthesis of chromium (III) oxide nanoparticles by electrochemical method and Mukia Maderaspatana plant extract, characterization, KMnO4 decomposition and antibacterial study. Modern Research in Catalysis, 2, 127–135.CrossRefGoogle Scholar
  25. 25.
    Hassen, A., El-Sayed, S., Morsi, W. M., & El Sayed, A. M. (2014). Preparation, dielectric and optical properties of Cr2O3/PVC nanocomposite films. Journal of Advances in Physics, 4, 571–584.Google Scholar
  26. 26.
    Jaswal, V. S., Arora, A. K., Kinger, M., & Gupta, V. D. (2014). Synthesis and characterization of chromium oxide nanoparticles. Oriental Journal of Chemistry, 30(2014), 559–566.CrossRefGoogle Scholar
  27. 27.
    Faia, M., Furtado, C. S., & Ferreira, A. J. (2005). AC impedance spectroscopy: A new equivalent circuit for titania thick film humidity sensors. Sensors and Actuators B: Chemical, 107, 353–359.CrossRefGoogle Scholar
  28. 28.
    Madhusudhanaa, H. C., Shobhadevic, S. N., Nagabhushanad, B. M., Chaluvarajue, B. V., Murugendrappaf, M. V., Hari Krishnad, R., et al. (2016). Effect of fuels on conductivity, dielectric and humidity sensingproperties of ZrO2 nanocrystals prepared by low temperature solutioncombustion method. Journal of Asian Ceramic Societies, 4, 309–318.CrossRefGoogle Scholar
  29. 29.
    Wang, Z., Lu, Y., Yuan, S., Shi, L., Zhao, Y., Zhang, M., et al. (2013). Hydrothermal synthesis and humidity sensing properties of size-controlled zirconium oxide (ZrO2) nanorods. Journal of Colloid and Interface Science, 396, 9–15.CrossRefGoogle Scholar
  30. 30.
    Bhosale, R., Pujari, S., Muley, G., Pagare, B., & Gambhire, A. (2013). Visible-light-activated nanocomposite photocatalyst of Cr2O3/SnO2. Journal of Nanostructure in Chemistry, 3, 46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • P. Jayamurugan
    • 1
  • R. Mariappan
    • 1
  • K. Premnazeer
    • 2
  • S. Ashokan
    • 3
  • Y. V. Subba Rao
    • 4
  • N. V. S. S. Seshagiri Rao
    • 4
  • C. Shanmugapriya
    • 5
  1. 1.Department of PhysicsAdhiyamaan College of EngineeringHosurIndia
  2. 2.Department of PhysicsIslamiah College (Autonomous)Newtown, VaniyambadiIndia
  3. 3.Department of PhysicsBannari Amman Institute of TechnologySathyamanglam, ErodeIndia
  4. 4.Department of PhysicsBirla Institute of Technology and Science (BITS)HyderabadIndia
  5. 5.Department of PhysicsSona College of TechnologySalemIndia

Personalised recommendations